EXISTENCE, REGULARITY AND WEAK-STRONG UNIQUENESS FOR THREE-DIMENSIONAL PETERLIN VISCOELASTIC MODEL

被引:0
|
作者
Brunk, Aaron [1 ]
Lu, Yong [2 ]
Lukacova-Medvidova, Maria [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
[2] Nanjing Univ, Dept Math, Nanjing, Peoples R China
关键词
Complex fluids; relative energy; parabolic regularity; weak-strong uniqueness; FINITE-ELEMENT APPROXIMATION; SPRING CHAIN MODELS; GLOBAL EXISTENCE; OLDROYD-B; NUMERICAL-ANALYSIS; DILUTE POLYMERS; FLUID SYSTEM; HYDRODYNAMICS; CRITERIA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze three-dimensional Peterlin viscoelastic model. By means of a mixed Galerkin and semigroup approach we prove the existence of weak solutions. Further, combining parabolic regularity with the relative energy method, we derive a conditional weak-strong uniqueness result.
引用
收藏
页码:201 / 230
页数:30
相关论文
共 50 条