Ground-Based Cloud Detection Using Multiscale Attention Convolutional Neural Network

被引:12
|
作者
Zhang, Zhong [1 ]
Yang, Shuzhen [1 ]
Liu, Shuang [1 ]
Xiao, Baihua [2 ]
Cao, Xiaozhong [3 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin 300387, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[3] China Meteorol Adm, Meteorol Observat Ctr, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Clouds; Databases; Decoding; Cloud computing; Convolutional neural networks; Computer architecture; Training; Attention module; cloud detection; multiscale module; Tianjin Normal University (TJNU) cloud detection database (TCDD); SEGMENTATION; SYSTEM;
D O I
10.1109/LGRS.2021.3106337
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Cloud detection plays a significant role in ground-based remote sensing observation, and it is quite challenging due to the variations in illumination and cloud form, and the vague boundaries between cloud and sky. In this letter, we propose a novel deep model named multiscale attention convolutional neural network (MACNN) for ground-based cloud detection, which possesses a symmetric encoder-decoder structure. For accurate cloud detection, we design the multiscale module in MACNN to obtain different receptive fields by using different hole rates for the filters, and meanwhile, we propose the attention module in MACNN to learn the attention coefficients in order to reflect different importance of pixels. Furthermore, we release the Tianjin Normal University (TJNU) cloud detection database (TCDD) to provide a comparative study for different methods, and to the best of our knowledge, it is the largest cloud detection database. We conduct a series of experiments on the TCDD, and the experimental results demonstrate that the proposed MACNN outperforms state-of-the-art methods in five quantitative evaluation criteria.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Attention-based Convolutional Neural Network for ASV Spoofing Detection
    Ling, Hefei
    Huang, Leichao
    Huang, Junrui
    Zhang, Baiyan
    Li, Ping
    INTERSPEECH 2021, 2021, : 4289 - 4293
  • [42] SegCloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation
    Xie, Wanyi
    Liu, Dong
    Yang, Ming
    Chen, Shaoqing
    Wang, Benge
    Wang, Zhenzhu
    Xia, Yingwei
    Liu, Yong
    Wang, Yiren
    Zhang, Chaofang
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (04) : 1953 - 1961
  • [43] Tactile-Based Fabric Defect Detection Using Convolutional Neural Network With Attention Mechanism
    Fang, Bin
    Long, Xingming
    Sun, Fuchun
    Liu, Huaping
    Zhang, Shixin
    Fang, Cheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [44] EEG-based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism
    Zhang, Xiaowei
    Li, Junlei
    Hou, Kechen
    Hu, Bin
    Shen, Jian
    Pan, Jing
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 128 - 133
  • [45] Anomaly Detection in Automated Vehicles Using Multistage Attention-Based Convolutional Neural Network
    Javed, Abdul Rehman
    Usman, Muhammad
    Rehman, Saif Ur
    Khan, Mohib Ullah
    Haghighi, Mohammad Sayad
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4291 - 4300
  • [46] Multiscale Residual Attention Convolutional Neural Network for Bearing Fault Diagnosis
    Jia, Linshan
    Chow, Tommy W. S.
    Wang, Yu
    Yuan, Yixuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [47] Spatiotemporal Fusion of Remote Sensing Images using a Convolutional Neural Network with Attention and Multiscale Mechanisms
    Li, Weisheng
    Zhang, Xiayan
    Peng, Yidong
    Dong, Meilin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (06) : 1973 - 1993
  • [48] A Hyperspectral Image Classification Method Based on the Nonlocal Attention Mechanism of a Multiscale Convolutional Neural Network
    Li, Mingtian
    Lu, Yu
    Cao, Shixian
    Wang, Xinyu
    Xie, Shanjuan
    SENSORS, 2023, 23 (06)
  • [49] Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis
    Xu, Qinghong
    Jiang, Hong
    Zhang, Xiangfeng
    Li, Jun
    Chen, Lan
    SENSORS, 2023, 23 (08)
  • [50] Foreground segmentation using multiscale convolutional neural network
    Fu, Hui-Ni
    Wang, Ben-Zhang
    Liu, Heng-Zhu
    ELECTRONICS LETTERS, 2020, 56 (12) : 597 - 598