EEG-based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism

被引:1
|
作者
Zhang, Xiaowei [1 ]
Li, Junlei [1 ]
Hou, Kechen [1 ]
Hu, Bin [1 ,2 ,3 ]
Shen, Jian [1 ]
Pan, Jing [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Gansu Prov Key Lab Wearable Comp, Lanzhou, Peoples R China
[2] Chinese Acad Sci, CAS Ctr Excellence Brain Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R China
[3] Chinese Acad Sci, Inst Biol Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
SEX-DIFFERENCES; ALPHA; DIAGNOSIS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electroencephalography (EEG)-based depression detection has become a hot topic in the development of biomedical engineering. However, the complexity and non-stationarity of EEG signals are two biggest obstacles to this application. In addition, the generalization of detection algorithms may be degraded owing to the influences brought by individual differences. In view of the correlation between EEG signals and individual demographics, such as gender, age, etc., and influences of these demographic factors on the incidence of depression, it would be better to incorporate demographic factors during EEG modeling and depression detection. In this work, we constructed an one-dimensional Convolutional Neural Network (1-D CNN) to obtain more effective features of EEG signals, then integrated gender and age factors into the 1-D CNN via an attention mechanism, which could prompt our 1-D CNN to explore complex correlations between EEG signals and demographic factors, and generate more effective high-level representations ultimately for the detection of depression. Experimental results on 170 (81 depressed patients and 89 normal controls) subjects showed that the proposed method is superior to the unitary 1-D CNN without gender and age factors and two other ways of incorporating demographics. This work also indicates that organic mixture of EEG signals and demographic factors is promising for the detection of depression.
引用
收藏
页码:128 / 133
页数:6
相关论文
共 50 条
  • [1] EEG-based Classification of Drivers Attention using Convolutional Neural Network
    Atilla, Fred
    Alimardani, Maryam
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2021, : 59 - 62
  • [2] EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism
    Chen, Wei
    Liao, Yuan
    Dai, Rui
    Dong, Yuanlin
    Huang, Liya
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 18
  • [3] EEG-based mild depression recognition using convolutional neural network
    Xiaowei Li
    Rong La
    Ying Wang
    Junhong Niu
    Shuai Zeng
    Shuting Sun
    Jing Zhu
    Medical & Biological Engineering & Computing, 2019, 57 : 1341 - 1352
  • [4] EEG-based mild depression recognition using convolutional neural network
    Li, Xiaowei
    La, Rong
    Wang, Ying
    Niu, Junhong
    Zeng, Shuai
    Sun, Shuting
    Zhu, Jing
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (06) : 1341 - 1352
  • [5] Cascaded Convolutional Neural Network with Attention Mechanism for Mobile EEG-based Driver Drowsiness Detection System
    Ding, Sirui
    Yuan, Zhiyong
    An, Panfeng
    Xue, Guotong
    Sun, Wenxiang
    Zhao, Jianhui
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1457 - 1464
  • [6] Scalp EEG-Based Pain Detection Using Convolutional Neural Network
    Chen, Duo
    Zhang, Haihong
    Kavitha, Perumpadappil Thomas
    Loy, Fong Ling
    Ng, Soon Huat
    Wang, Chuanchu
    Phua, Kok Soon
    Tjan, Soon Yin
    Yang, Su-Yin
    Guan, Cuntai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 274 - 285
  • [7] Automated EEG-based screening of depression using deep convolutional neural network
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    Subha, D. P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 : 103 - 113
  • [8] EEG-based detection of the locus of auditory attention with convolutional neural networks
    Vandecappelle, Servaas
    Deckers, Lucas
    Das, Neetha
    Ansari, Amir Hossein
    Bertrand, Alexander
    Francart, Tom
    ELIFE, 2021, 10
  • [9] A lightweight convolutional transformer neural network for EEG-based depression recognition
    Hou, Pengfei
    Li, Xiaowei
    Zhu, Jing
    Hu, Bin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [10] EEG-Based Auditory Attention Detection With Spiking Graph Convolutional Network
    Cai, Siqi
    Zhang, Ran
    Zhang, Malu
    Wu, Jibin
    Li, Haizhou
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (05) : 1698 - 1706