Artificial neural network prediction of the psychometric activities of phenylalkylamines using DFT-calculated molecular descriptors

被引:1
|
作者
Haghdadi, Mina [1 ]
Fatemi, Mohammad H. [2 ]
机构
[1] Islamic Azad Univ, Dept Chem, Babol Branch, Babol Sar, Iran
[2] Mazandaran Univ, Dept Chem, Babol Sar, Iran
关键词
density functional theory; artificial neural network; multiple linear regression; quantitative structure-property relationship; phenylalkylamines; CHEMICAL HARDNESS; FUKUI FUNCTION; HARTREE-FOCK; QSAR;
D O I
10.2298/JSC100408116H
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present work, a quantitative structure activity relationship (QSAR) method was used to predict the psychometric activity values (as mescaline unit, log MU) of 48 phenylalkylamine derivatives from their density functional theory (DFT) calculated molecular descriptors and an artificial neural network (ANN). In the first step, the molecular descriptors were obtained by DFT calculation at the 6-311G* level of theory. Then the stepwise multiple linear regression method was employed to screen the descriptor spaces. In the next step, an artificial neural network and multiple linear regressions (MLR) models were developed to construct nonlinear and linear QSAR models, respectively. The standard errors in the prediction of log MU by the MLR model were 0.398, 0.443 and 0.427 for training, internal and external test sets, respectively, while these values for the ANN model were 0.132, 0.197 and 0.202, respectively. The obtained results show the applicability of QSAR approaches by using ANN techniques in prediction of log MU of phenylalkylamine derivatives from their DFT-calculated molecular descriptors.
引用
收藏
页码:1391 / 1404
页数:14
相关论文
共 50 条
  • [21] SRAF Printing Prediction Using Artificial Neural Network
    Kwon, Yonghwi
    Yang, Jinho
    Kim, Sungho
    Kim, CheolKyun
    Shin, Youngsoo
    OPTICAL MICROLITHOGRAPHY XXXIII, 2021, 11327
  • [22] Prediction of Egg Production Using Artificial Neural Network
    Ghazanfari, S.
    Nobari, K.
    Tahmoorespur, M.
    IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2011, 1 (01): : 11 - 16
  • [23] Prediction of extrusion pressure using an artificial neural network
    Li, YY
    Bridgwater, J
    POWDER TECHNOLOGY, 2000, 108 (01) : 65 - 73
  • [24] Using artificial neural network for reservoir eutrophication prediction
    Kuo, Jan-Tai
    Hsieh, Ming-Han
    Lung, Wu-Seng
    She, Nian
    ECOLOGICAL MODELLING, 2007, 200 (1-2) : 171 - 177
  • [25] Classifying microcalcifications on digital mammography using morphological descriptors and artificial neural network
    Avalos-Rivera, Estefania D.
    Pastrana-Palma, Alberto de J.
    IEEE CACIDI 2016 - IEEE CONFERENCE ON COMPUTER SCIENCES, 2016,
  • [26] Prediction of the plasma distribution using an artificial neural network
    Li Wei
    Chen Jun-Fang
    Wang Teng
    CHINESE PHYSICS B, 2009, 18 (06) : 2441 - 2444
  • [27] Prediction of turbojet performance by using artificial neural network
    Mohammed, Mortda
    Taher, Maher K.
    Khudhair, Saleh
    MATERIALS TODAY-PROCEEDINGS, 2022, 60 : 1513 - 1522
  • [28] Thermal cracking prediction using artificial neural network
    Zeghal, M.
    PAVEMENT CRACKING: MECHANISMS, MODELING, DETECTION, TESTING AND CASE HISTORIES, 2008, : 379 - 386
  • [29] Prediction of air pollutants by using an artificial neural network
    Sang Hyun Sohn
    Sea Cheon Oh
    Yeong-Koo Yeo
    Korean Journal of Chemical Engineering, 1999, 16 : 382 - 387
  • [30] Prediction of hepatitis C using artificial neural network
    Jajoo, R
    Mital, D
    Haque, S
    Srinivasan, S
    METMBS'01: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2001, : 25 - 31