Notch Sensitivity of the Fatigue Limit in High-Strength Steel

被引:7
|
作者
Hamano, Yasuaki [1 ]
Koyama, Motomichi [2 ]
Hamada, Shigeru [2 ]
Noguchi, Hiroshi [2 ]
机构
[1] Kyushu Univ, Grad Sch Engn, Nishi Ku, 744 Moto Oka, Fukuoka 8190395, Japan
[2] Kyushu Univ, Dept Mech Engn, Fac Engn, Nishi Ku, 744 Moto Oka, Fukuoka 8190395, Japan
关键词
fatigue limit; notch sensitivity; drill hole; FIB notch; high-strength steel; QUANTITATIVE-EVALUATION; STRESS; CRACK; INCLUSIONS;
D O I
10.2355/isijinternational.ISIJINT-2015-744
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The fatigue limit of a tempered martensitic steel was evaluated in specimens with stress concentration sources, which were introduced with a small drill and focused ion beam (FIB). In a previous study using ferrite-pearlite steel, the fatigue limit of a specimen with a FIB notch was almost the same as the fatigue limit of a specimen with a drill hole, and the non-propagating cracks were found around both shapes of stress concentration sources. However, the fatigue limit of the specimen with a FIB notch was about 100 MPa lower than the fatigue limit of the specimen with a drill hole in tempered martensitic steel. Additionally, the non-propagating crack was observed only in the specimen with a FIB notch. The stress concentration source shapes in both materials are the same, then the difference in fatigue limit stems from the material property. This indicates that there is applicable range where stress concentration source is regarded as a pre-crack, and the range depends on material. At first, the reason for the difference in fatigue limit was discussed in terms of the non-propagating crack. In this part, we discussed non propagating crack phenomenon around drill hole. Secondly, the effect of hardness which caused the difference in fatigue limit was discussed by using an analytical result of Dugdale model. Finally, we inferred the notch sensitivity from the propagation by deformation at crack tip. After that, we concluded that the propagation by fracture at crack tip is also important factor in analyzing notch sensitivity.
引用
收藏
页码:1480 / 1486
页数:7
相关论文
共 50 条
  • [21] Analysis of fatigue notch effect due to axial misalignment for ultra high-strength steel butt joints
    Markus J. Ottersböck
    Martin Leitner
    Michael Stoschka
    Wilhelm Maurer
    Welding in the World, 2019, 63 : 851 - 865
  • [22] Analysis of fatigue notch effect due to axial misalignment for ultra high-strength steel butt joints
    Ottersboeck, Markus J.
    Leitner, Martin
    Stoschka, Michael
    Maurer, Wilhelm
    WELDING IN THE WORLD, 2019, 63 (03) : 851 - 865
  • [24] CORROSION FATIGUE OF TYPE 4140 HIGH-STRENGTH STEEL
    LEE, HH
    UHLIG, HH
    METALLURGICAL TRANSACTIONS, 1972, 3 (11): : 2949 - &
  • [25] HIGH-STRENGTH STEEL PROCESSING VARIABLES THAT AFFECT FATIGUE
    PENGRA, JJ
    WALD, GG
    SAMPE QUARTERLY-SOCIETY FOR THE ADVANCEMENT OF MATERIAL AND PROCESS ENGINEERING, 1978, 9 (02): : 1 - 7
  • [26] Fatigue properties of high-strength steel in diesel oil
    Kagami, S.
    Ueno, A.
    Miyakawa, S.
    Miyamoto, N.
    Ishibashi, N.
    Guennec, B.
    21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 : 1738 - 1745
  • [27] Fatigue lifetime and endurance limit prediction for high-strength steels
    Kunow, S
    Wölkerling, S
    Löwisch, G
    Kienzler, R
    Rohde, L
    Bomas, H
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2002, 33 (05) : 289 - 297
  • [28] 1011 Gigacycle Fatigue Properties of High-strength Steel
    Furuya, Yoshiyuki
    ISIJ INTERNATIONAL, 2021, 61 (01) : 396 - 400
  • [29] Study on Fatigue Characteristics of High-Strength Steel Welds
    Suk, Chang Hong
    Won, Yoo Seung
    Park, Jong Chan
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2015, 39 (03) : 319 - 325
  • [30] Investigation on fatigue in high-strength steel offshore structures
    Agerskov, H.
    Petersen, R.I.
    Martinez, L.Lopez
    Welding Research Abroad, 1999, 45 (04): : 47 - 61