Land-use change reduces soil nitrogen retention of both particulate and mineral-associated organic matter in a temperate grassland

被引:6
|
作者
Yang, Lu [1 ,2 ]
Liu, Weixing [1 ,2 ]
Jia, Zhou [1 ,2 ]
Li, Ping [1 ,2 ]
Wu, Yuntao [1 ,2 ]
Chen, Yaru [1 ,2 ]
Liu, Chao [1 ,2 ]
Chang, Pengfei [1 ,2 ]
Liu, Lingli [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Xiangshan, Beijing 100093, Peoples R China
[2] Univ Chinese Acad Sci, Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
N-15; labeling; Tillage; Winter snow cover; recovery; Particle density fractions; MICROBIAL BIOMASS; SEQUESTRATION POTENTIALS; TERRESTRIAL ECOSYSTEMS; DIFFERENT TILLAGE; CARBON STORAGE; WIND EROSION; SNOW DEPTH; FRACTIONS; WINTER; MECHANISMS;
D O I
10.1016/j.catena.2022.106432
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil organic matter (SOM) fractions vary in formation and microbial activities, thus playing different roles in exogenous nitrogen (N) retention in terrestrial ecosystems. However, it remains unclear how land-use and environmental changes affect the behavior of SOM fractions in retaining exogenous N. Here, we investigated N distribution among four SOM fractions and how soil N retention capacity responds to tillage and increased snowfall. We monitored N retention in SOM fractions by adding (NH4NO3)-N-15-N-15 isotope in the field in a temperate grassland in Inner Mongolia. Our results showed that the fine mineral-associated organic matter (MOM < 20 mu m) had the largest N pool with a lower mass. The free particulate organic matter (fPOM) accounted for only 0.8% of total SOM mass, representing the second-largest N pool. The coarse mineral-associated organic matter (MOM > 20 mu m) represented the fewer N pool with the largest mass. MOM < 20 mu m and fPOM retained > 90% of the N-15 tracer in soil. Deepened snow did not affect N-15 retention in SOM fractions, while tillage decreased N-15 retention in MOM < 20 mu m, fPOM, and occluded particulate organic matter within aggregates (oPOM). We suggested that the reduction in soil total N retention under tillage conditions was mainly due to the reduced N retention in fPOM and MOM < 20 mu m. Structural equation modeling analysis revealed that tillage-induced decrease in N-15 retention of MOM < 20 mu m was regulated by both decreased microbial N-15 retention and reduced clay and silt contents. The decrease in N-15 retention of fPOM was probably due to the decreased microbial N-15 retention along with the increased plant N-15 uptake. This research reveals divergent pathways of N-15 retention among different SOM fractions in response to land-use change and provides novel insights into the estimation of soil N retention capacity with SOM fractions taken into consideration.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Changes in particulate and mineral-associated organic carbon with land use in contrasting soils
    Yeasmin, Sabina
    Singh, Balwant
    Johnston, Cliff T.
    Hua, Quan
    Sparks, Donald L.
    [J]. PEDOSPHERE, 2023, 33 (03) : 421 - 435
  • [12] Changes in particulate and mineral-associated organic carbon with land use in contrasting soils
    Sabina YEASMIN
    Balwant SINGH
    Cliff TJOHNSTON
    Quan HUA
    Donald LSPARKS
    [J]. Pedosphere, 2023, 33 (03) - 435
  • [13] Formation of mineral-associated organic matter in temperate soils is primarily controlled by mineral type and modified by land use and management intensity
    Bramble, De Shorn E.
    Ulrich, Susanne
    Schoening, Ingo
    Mikutta, Robert
    Brandt, Luise
    Poll, Christian
    Kandeler, Ellen
    Mikutta, Christian
    Konrad, Alexander
    Siemens, Jan
    Yang, Yang
    Polle, Andrea
    Schall, Peter
    Ammer, Christian
    Kaiser, Klaus
    Schrumpf, Marion
    [J]. GLOBAL CHANGE BIOLOGY, 2024, 30 (01)
  • [14] Latitudinal patterns of particulate and mineral-associated organic matter down the soil profile in drylands
    Li, Xiaojuan
    Yang, Tinghui
    Hicks, Lettice C.
    Hu, Bin
    Li, Fanglan
    Liu, Xin
    Wei, Dandan
    Wang, Zilong
    Bao, Weikai
    [J]. SOIL & TILLAGE RESEARCH, 2023, 226
  • [15] Author Correction: Different climate sensitivity of particulate and mineral-associated soil organic matter
    Emanuele Lugato
    Jocelyn M. Lavallee
    Michelle L. Haddix
    Panos Panagos
    M. Francesca Cotrufo
    [J]. Nature Geoscience, 2022, 15 : 509 - 509
  • [16] Nitrogen fertilisation reduces the contribution of root-derived carbon to mineral-associated organic matter formation at low and high defoliation frequencies in a grassland soil
    Bicharanloo, Bahareh
    Bagheri Shirvan, Milad
    Cavagnaro, Timothy R.
    Keitel, Claudia
    Dijkstra, Feike A.
    [J]. PLANT AND SOIL, 2024,
  • [17] Soil macroaggregate-occluded mineral-associated organic carbon drives the response of soil organic carbon to land use change
    Fu, Zihuan
    Hu, Wei
    Beare, Mike
    Baird, David
    [J]. SOIL & TILLAGE RESEARCH, 2024, 244
  • [18] Global turnover of soil mineral-associated and particulate organic carbon
    Zhou, Zhenghu
    Ren, Chengjie
    Wang, Chuankuan
    Delgado-Baquerizo, Manuel
    Luo, Yiqi
    Luo, Zhongkui
    Du, Zhenggang
    Zhu, Biao
    Yang, Yuanhe
    Jiao, Shuo
    Zhao, Fazhu
    Cai, Andong
    Yang, Gaihe
    Wei, Gehong
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [19] Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
    Lavallee, Jocelyn M.
    Soong, Jennifer L.
    Cotrufo, M. Francesca
    [J]. GLOBAL CHANGE BIOLOGY, 2020, 26 (01) : 261 - 273
  • [20] Effects of Land-Use Change on Soil Organic Carbon and Nitrogen
    Jafarian, Zeinab
    Kavian, Ataollah
    [J]. COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2013, 44 (1-4) : 339 - 346