Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century

被引:853
|
作者
Lavallee, Jocelyn M. [1 ]
Soong, Jennifer L. [2 ]
Cotrufo, M. Francesca [1 ,3 ]
机构
[1] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
[2] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA
[3] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
carbon sequestration; fractionation; global change; mineral-associated organic matter; particulate organic matter; soil carbon; soil fertility; soil organic matter; PARTICLE-SIZE FRACTIONS; FOREST SOIL; LITTER DECOMPOSITION; CARBON SATURATION; NITROGEN MINERALIZATION; AGRICULTURAL MANAGEMENT; TEMPERATURE SENSITIVITY; PHYSICAL SEPARATION; DENSITY FRACTIONS; C SEQUESTRATION;
D O I
10.1111/gcb.14859
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Managing soil organic matter (SOM) stocks to address global change challenges requires well-substantiated knowledge of SOM behavior that can be clearly communicated between scientists, management practitioners, and policy makers. However, SOM is incredibly complex and requires separation into multiple components with contrasting behavior in order to study and predict its dynamics. Numerous diverse SOM separation schemes are currently used, making cross-study comparisons difficult and hindering broad-scale generalizations. Here, we recommend separating SOM into particulate (POM) and mineral-associated (MAOM) forms, two SOM components that are fundamentally different in terms of their formation, persistence, and functioning. We provide evidence of their highly contrasting physical and chemical properties, mean residence times in soil, and responses to land use change, plant litter inputs, warming, CO2 enrichment, and N fertilization. Conceptualizing SOM into POM versus MAOM is a feasible, well-supported, and useful framework that will allow scientists to move beyond studies of bulk SOM, but also use a consistent separation scheme across studies. Ultimately, we propose the POM versus MAOM framework as the best way forward to understand and predict broad-scale SOM dynamics in the context of global change challenges and provide necessary recommendations to managers and policy makers.
引用
收藏
页码:261 / 273
页数:13
相关论文
共 50 条
  • [1] Global turnover of soil mineral-associated and particulate organic carbon
    Zhou, Zhenghu
    Ren, Chengjie
    Wang, Chuankuan
    Delgado-Baquerizo, Manuel
    Luo, Yiqi
    Luo, Zhongkui
    Du, Zhenggang
    Zhu, Biao
    Yang, Yuanhe
    Jiao, Shuo
    Zhao, Fazhu
    Cai, Andong
    Yang, Gaihe
    Wei, Gehong
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Soil carbon storage informed by particulate and mineral-associated organic matter
    Cotrufo, M. Francesca
    Ranalli, Maria Giovanna
    Haddix, Michelle L.
    Six, Johan
    Lugato, Emanuele
    [J]. NATURE GEOSCIENCE, 2019, 12 (12) : 989 - +
  • [3] Different climate sensitivity of particulate and mineral-associated soil organic matter
    Emanuele Lugato
    Jocelyn M. Lavallee
    Michelle L. Haddix
    Panos Panagos
    M. Francesca Cotrufo
    [J]. Nature Geoscience, 2021, 14 : 295 - 300
  • [4] Soil aggregate formation and the accrual of particulate and mineral-associated organic matter
    Jastrow, JD
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (4-5): : 665 - 676
  • [5] Soil carbon storage informed by particulate and mineral-associated organic matter
    M. Francesca Cotrufo
    Maria Giovanna Ranalli
    Michelle L. Haddix
    Johan Six
    Emanuele Lugato
    [J]. Nature Geoscience, 2019, 12 : 989 - 994
  • [6] Different climate sensitivity of particulate and mineral-associated soil organic matter
    Lugato, Emanuele
    Lavallee, Jocelyn M.
    Haddix, Michelle L.
    Panagos, Panos
    Cotrufo, M. Francesca
    [J]. NATURE GEOSCIENCE, 2021, 14 (05) : 295 - +
  • [7] Divergent contribution of particulate and mineral-associated organic matter to soil carbon in grassland
    Liao, Jiaojiao
    Yang, Xuan
    Dou, Yanxing
    Wang, Baorong
    Xue, Zhijing
    Sun, Hui
    Yang, Yang
    An, Shaoshan
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 344
  • [8] Distinct bioenergetic signatures in particulate versus mineral-associated soil organic matter
    Williams, Elizabeth K.
    Fogel, Marilyn L.
    Berhe, Asmeret Asefaw
    Plante, Alain F.
    [J]. GEODERMA, 2018, 330 : 107 - 116
  • [9] Latitudinal patterns of particulate and mineral-associated organic matter down the soil profile in drylands
    Li, Xiaojuan
    Yang, Tinghui
    Hicks, Lettice C.
    Hu, Bin
    Li, Fanglan
    Liu, Xin
    Wei, Dandan
    Wang, Zilong
    Bao, Weikai
    [J]. SOIL & TILLAGE RESEARCH, 2023, 226
  • [10] Author Correction: Different climate sensitivity of particulate and mineral-associated soil organic matter
    Emanuele Lugato
    Jocelyn M. Lavallee
    Michelle L. Haddix
    Panos Panagos
    M. Francesca Cotrufo
    [J]. Nature Geoscience, 2022, 15 : 509 - 509