Maximum Size of Maximally Irregular Graphs

被引:0
|
作者
Horoldagva, Batmend [1 ,2 ]
Buyantogtokh, Lkhagva [2 ]
Dorjsembe, Shiikhar [1 ]
Gutman, Ivan [3 ,4 ]
机构
[1] Natl Univ Educ, Dept Math, Baga Toiruu 14, Ulaanbaatar, Mongolia
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[3] Univ Kragujevac, Fac Sci, Kragujevac, Serbia
[4] State Univ Novi Pazar, Novi Pazar, Serbia
关键词
INDEXES;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The irregularity index of a simple graph G is the number of distinct elements in the degree sequence of G. If the irregularity index of a connected graph G is equal to the maximum vertex degree, then G is said to be maximally irregular. In this paper, we determine the maximum size of maximally irregular graphs with given order and irregularity index.
引用
收藏
页码:81 / 98
页数:18
相关论文
共 50 条
  • [41] Graphs with maximum size and given paired-domination number
    Henning, Michael A.
    McCoy, John
    Southey, Justin
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 170 : 72 - 82
  • [42] Maximum size of a minimum watching system and the graphs achieving the bound
    Auger, David
    Charon, Irene
    Hudry, Olivier
    Lobstein, Antoine
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 164 : 20 - 33
  • [43] The Size of Edge Chromatic Critical Graphs with Maximum Degree 6
    Luo, Rong
    Miao, Lianying
    Zhao, Yue
    [J]. JOURNAL OF GRAPH THEORY, 2009, 60 (02) : 149 - 171
  • [44] Neighbourly irregular graphs
    Bhragsam, SG
    Ayyaswamy, SK
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (03): : 389 - 399
  • [45] MAXIMALLY NONHAMILTONIAN-CONNECTED GRAPHS
    WILLIAMSON, JE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A46 - A46
  • [46] On the number of edges in maximally linkless graphs
    Aires, Max
    [J]. JOURNAL OF GRAPH THEORY, 2021, 98 (03) : 383 - 388
  • [47] ON NEIGHBOURLY IRREGULAR GRAPHS
    Walikar, H. B.
    Halkarni, S. B.
    Ramane, H. S.
    Tavakoli, M.
    Ashrafi, A. R.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (01): : 31 - 39
  • [48] EXTREMELY IRREGULAR GRAPHS
    Tavakoli, M.
    Rahbarnia, F.
    Mirzavaziri, M.
    Ashrafi, A. R.
    Gutman, I.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (01): : 135 - 139
  • [49] ON IRREGULAR COLORINGS OF GRAPHS
    Radcliffe, Mary
    Zhang, Ping
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2006, 3 (02) : 175 - 191
  • [50] Iterated line graphs are maximally ordered
    Knor, M
    Niepel, L
    [J]. JOURNAL OF GRAPH THEORY, 2006, 52 (02) : 171 - 180