EXTREMELY IRREGULAR GRAPHS

被引:0
|
作者
Tavakoli, M. [1 ]
Rahbarnia, F. [1 ]
Mirzavaziri, M. [1 ]
Ashrafi, A. R. [2 ]
Gutman, I. [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, POB 1159, Mashhad 91775, Iran
[2] Univ Kashan, Fac Math & Sci, Dept Math, Kashan 8731751167, Iran
[3] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2013年 / 37卷 / 01期
关键词
Irregularity (of graph); Albertson index; third Zagreb index; degree (of vertex);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The irregularity of a graph G is defined as irr(G) = Sigma vertical bar d(x) - d(y)vertical bar where d(x) is the degree of vertex x and the summation embraces all pairs of adjacent vertices of G. We characterize the graphs minimum and maximum values of irr.
引用
收藏
页码:135 / 139
页数:5
相关论文
共 50 条
  • [1] EXTREMELY IRREGULAR UNICYCLIC GRAPHS
    Nasiri, R.
    Gholami, A.
    Fath-Tabar, G. H.
    Ellahi, H. R.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (02): : 281 - 292
  • [2] Neighbourly irregular graphs
    Bhragsam, SG
    Ayyaswamy, SK
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (03): : 389 - 399
  • [3] ON NEIGHBOURLY IRREGULAR GRAPHS
    Walikar, H. B.
    Halkarni, S. B.
    Ramane, H. S.
    Tavakoli, M.
    Ashrafi, A. R.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (01): : 31 - 39
  • [4] ON IRREGULAR COLORINGS OF GRAPHS
    Radcliffe, Mary
    Zhang, Ping
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2006, 3 (02) : 175 - 191
  • [5] On Maximally Irregular Graphs
    Mukwembi, Simon
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 717 - 721
  • [6] HIGHLY IRREGULAR GRAPHS
    ALAVI, Y
    CHARTRAND, G
    CHUNG, FRK
    ERDOS, P
    GRAHAM, RL
    OELLERMANN, OR
    [J]. JOURNAL OF GRAPH THEORY, 1987, 11 (02) : 235 - 249
  • [7] REGULARIZING IRREGULAR GRAPHS
    BUCKLEY, F
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (11) : 29 - 33
  • [8] Stepwise irregular graphs
    Gutman, Ivan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 234 - 238
  • [9] Irregular domination graphs
    Mays, Caryn
    Zhang, Ping
    [J]. CONTRIBUTIONS TO MATHEMATICS, 2022, 6 : 5 - 14
  • [10] The Size of Maximally Irregular Graphs and Maximally Irregular Triangle-Free Graphs
    Liu, Fengxia
    Zhang, Zhao
    Meng, Jixiang
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (03) : 699 - 705