Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning

被引:23
|
作者
Baskaran, Lohendran [1 ,2 ,3 ,4 ]
Al'Aref, Subhi J. [1 ,2 ,3 ]
Maliakal, Gabriel [5 ]
Lee, Benjamin C. [1 ]
Xu, Zhuoran [1 ]
Choi, Jeong W. [1 ]
Lee, Sang-Eun [6 ,7 ]
Sung, Ji Min [6 ]
Lin, Fay Y. [1 ,2 ,3 ]
Dunham, Simon [1 ]
Mosadegh, Bobak [1 ]
Kim, Yong-Jin [8 ]
Gottlieb, Ilan [9 ]
Lee, Byoung Kwon [10 ]
Chun, Eun Ju [11 ]
Cademartiri, Filippo [12 ]
Maffei, Erica [13 ]
Marques, Hugo [14 ]
Shin, Sanghoon [7 ]
Choi, Jung Hyun [15 ]
Chinnaiyan, Kavitha [16 ]
Hadamitzky, Martin [17 ]
Conte, Edoardo [18 ]
Andreini, Daniele [18 ]
Pontone, Gianluca [18 ]
Budoff, Matthew J. [19 ]
Leipsic, Jonathon A. [20 ]
Raff, Gilbert L. [16 ]
Virmani, Renu [16 ,21 ]
Samady, Habib [22 ]
Stone, Peter H. [23 ]
Berman, Daniel S. [24 ]
Narula, Jagat [25 ,26 ]
Bax, Jeroen J. [27 ]
Chang, Hyuk-Jae [6 ]
Min, James K. [1 ,2 ,3 ]
Shaw, Leslee J. [1 ,2 ,3 ]
机构
[1] Weill Cornell Med, Dalio Inst Cardiovasc Imaging, New York, NY 10065 USA
[2] New York Presbyterian Hosp, Dept Radiol, New York, NY 10038 USA
[3] Weill Cornell Med, New York, NY 10065 USA
[4] Natl Heart Ctr, Dept Cardiovasc Med, Singapore, Singapore
[5] Cleerly Inc, New York, NY USA
[6] Yonsei Univ, Integrat Cardiovasc Imaging Ctr, Severance Cardiovasc Hosp, Div Cardiol,Coll Med, Seoul, South Korea
[7] Ewha Womans Univ, Dept Internal Med, Div Cardiol, Seoul Hosp, Seoul, South Korea
[8] Seoul Natl Univ, Seoul Natl Univ Hosp, Cardiovasc Ctr, Dept Internal Med,Coll Med, Seoul, South Korea
[9] Casa Saude Sao Jose, Dept Radiol, Rio De Janeiro, Brazil
[10] Yonsei Univ, Gangnam Severance Hosp, Div Cardiol, Coll Med, Seoul, South Korea
[11] Seoul Natl Univ, Dept Radiol, Bundang Hosp, Sungnam, South Korea
[12] SDN IRCCS, Cardiovasc Imaging Ctr, Naples, Italy
[13] ASUR Marche, Dept Radiol, Area Vasta 1, Urbino, Italy
[14] Hosp Luz, Unit Cardiovasc Imaging, UNICA, Lisbon, Portugal
[15] Pusan Univ Hosp, Busan, South Korea
[16] William Beaumont Hosp, Dept Cardiol, Royal Oak, MI 48072 USA
[17] German Heart Ctr Munich, Dept Radiol & Nucl Med, Munich, Germany
[18] IRCCS, Ctr Cardiol Monzino, Milan, Italy
[19] Los Angeles Biomed Res Inst, Dept Med, Torrance, CA USA
[20] Univ British Columbia, Dept Med & Radiol, Vancouver, BC, Canada
[21] CVPath Inst, Dept Pathol, Gaithersburg, MD USA
[22] Emory Univ, Sch Med, Div Cardiol, Atlanta, GA 30322 USA
[23] Harvard Med Sch, Brigham & Womens Hosp, Cardiovasc Div, Boston, MA 02115 USA
[24] Cedars Sinai Med Ctr, Dept Imaging & Med, Los Angeles, CA 90048 USA
[25] Icahn Sch Med Mt Sinai, Mt Sinai Heart Zena & Michael Wiener Cardiovasc I, New York, NY 10029 USA
[26] Icahn Sch Med Mt Sinai, Henry R Kravis Ctr Cardiovasc Hlth, New York, NY 10029 USA
[27] Leiden Univ, Dept Cardiol, Med Ctr, Leiden, Netherlands
来源
PLOS ONE | 2020年 / 15卷 / 05期
基金
美国国家卫生研究院;
关键词
HEART;
D O I
10.1371/journal.pone.0232573
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Segmentation of cardiovascular images is resource-intensive. We design an automated deep learning method for the segmentation of multiple structures from Coronary Computed Tomography Angiography (CCTA) images. Methods Images from a multicenter registry of patients that underwent clinically-indicated CCTA were used. The proximal ascending and descending aorta (PAA, DA), superior and inferior vena cavae (SVC, IVC), pulmonary artery (PA), coronary sinus (CS), right ventricular wall (RVW) and left atrial wall (LAW) were annotated as ground truth. The U-net-derived deep learning model was trained, validated and tested in a 70:20:10 split. Results The dataset comprised 206 patients, with 5.130 billion pixels. Mean age was 59.9 +/- 9.4 yrs., and was 42.7% female. An overall median Dice score of 0.820 (0.782, 0.843) was achieved. Median Dice scores for PAA, DA, SVC, IVC, PA, CS, RVW and LAW were 0.969 (0.979, 0.988), 0.953 (0.955, 0.983), 0.937 (0.934, 0.965), 0.903 (0.897, 0.948), 0.775 (0.724, 0.925), 0.720 (0.642, 0.809), 0.685 (0.631, 0.761) and 0.625 (0.596, 0.749) respectively. Apart from the CS, there were no significant differences in performance between sexes or age groups. Conclusions An automated deep learning model demonstrated segmentation of multiple cardiovascular structures from CCTA images with reasonable overall accuracy when evaluated on a pixel level.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Segmentation and Visualization of Tubular Structures in Computed Tomography Angiography
    Hachaj, Tomasz
    Ogiela, Marek R.
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2012), PT III, 2012, 7198 : 495 - 503
  • [42] Automated femur segmentation from computed tomography images using a deep neural network
    Bjornsson, P. A.
    Helgason, B.
    Palsson, H.
    Sigurdsson, S.
    Gudnason, V.
    Ellingsen, L. M.
    [J]. MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [43] Diagnosis of intracranial aneurysms by computed tomography angiography using deep learning-based detection and segmentation
    You, Wei
    Feng, Junqiang
    Lu, Jing
    Chen, Ting
    Liu, Xinke
    Wu, Zhenzhou
    Gong, Guoyang
    Sui, Yutong
    Wang, Yanwen
    Zhang, Yifan
    Ye, Wanxing
    Chen, Xiheng
    Lv, Jian
    Wei, Dachao
    Tang, Yudi
    Deng, Dingwei
    Gui, Siming
    Lin, Jun
    Chen, Peike
    Wang, Ziyao
    Gong, Wentao
    Wang, Yang
    Zhu, Chengcheng
    Zhang, Yue
    Saloner, David A.
    Mitsouras, Dimitrios
    Guan, Sheng
    Li, Youxiang
    Jiang, Yuhua
    Wang, Yan
    [J]. JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2024,
  • [44] Automatic pericardium segmentation and quantification of epicardial fat from computed tomography angiography
    Norlen, Alexander
    Alven, Jennifer
    Molnar, David
    Enqvist, Olof
    Norrlund, Rauni Rossi
    Brandberg, John
    Bergstrom, Goran
    Kahla, Fredrik
    [J]. JOURNAL OF MEDICAL IMAGING, 2016, 3 (03)
  • [45] Random forest active learning for AAA thrombus segmentation in computed tomography angiography images
    Maiora, Josu
    Ayerdi, Borja
    Grana, Manuel
    [J]. NEUROCOMPUTING, 2014, 126 : 71 - 77
  • [46] PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography
    Wang, Linyuan
    Zhang, Xiaofeng
    Tian, Congyu
    Chen, Shu
    Deng, Yongzhi
    Liao, Xiangyun
    Wang, Qiong
    Si, Weixin
    [J]. VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2024, 7 (01)
  • [47] A deep learning-based precision and automatic kidney segmentation system using efficient feature pyramid networks in computed tomography images
    Hsiao, Chiu-Han
    Lin, Ping-Cherng
    Chung, Li-An
    Lin, Frank Yeong-Sung
    Yang, Feng-Jung
    Yang, Shao-Yu
    Wu, Chih-Horng
    Huang, Yennun
    Sun, Tzu-Lung
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [48] A deep learning algorithm using contrast-enhanced computed tomography (CT) images for segmentation and rapid automatic detection of aortic dissection
    Cheng, Junlong
    Tian, Shengwei
    Yu, Long
    Ma, Xiang
    Xing, Yan
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62
  • [49] Dose robustness of deep learning models for anatomic segmentation of computed tomography images
    Tsanda, Artyom
    Nickisch, Hannes
    Wissel, Tobias
    Klinder, Tobias
    Knopp, Tobias
    Grass, Michael
    [J]. JOURNAL OF MEDICAL IMAGING, 2024, 11 (04)
  • [50] Deep learning-based Pulmonary Arterial Segmentation in Computed Tomography Images
    Merchan, Mishell
    Suarez, Juan
    Pertuz, Said
    [J]. 2024 XXIV SYMPOSIUM OF IMAGE, SIGNAL PROCESSING, AND ARTIFICIAL VISION, STSIVA 2024, 2024,