Dose robustness of deep learning models for anatomic segmentation of computed tomography images

被引:0
|
作者
Tsanda, Artyom [1 ,2 ]
Nickisch, Hannes [2 ]
Wissel, Tobias [2 ]
Klinder, Tobias [2 ]
Knopp, Tobias [1 ,3 ]
Grass, Michael [2 ]
机构
[1] Hamburg Univ Technol, Inst Biomed Imaging, Hamburg, Germany
[2] Philips Innovat Technol, Hamburg, Germany
[3] Univ Med Ctr Hamburg Eppendorf, Sect Biomed Imaging, Hamburg, Germany
关键词
low-dose computed tomography; semantic segmentation; denoising; deep learning; CT; NOISE; REDUCTION; LUNG;
D O I
10.1117/1.JMI.11.4.044005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The trend towards lower radiation doses and advances in computed tomography (CT) reconstruction may impair the operation of pretrained segmentation models, giving rise to the problem of estimating the dose robustness of existing segmentation models. Previous studies addressing the issue suffer either from a lack of registered low- and full-dose CT images or from simplified simulations. Approach: We employed raw data from full-dose acquisitions to simulate low-dose CT scans, avoiding the need to rescan a patient. The accuracy of the simulation is validated using a real CT scan of a phantom. We consider down to 20% reduction of radiation dose, for which we measure deviations of several pretrained segmentation models from the full-dose prediction. In addition, compatibility with existing denoising methods is considered. Results: The results reveal the surprising robustness of the TotalSegmentator approach, showing minimal differences at the pixel level even without denoising. Less robust models show good compatibility with the denoising methods, which help to improve robustness in almost all cases. With denoising based on a convolutional neural network (CNN), the median Dice between low- and full-dose data does not fall below 0.9 (12 for the Hausdorff distance) for all but one model. We observe volatile results for labels with effective radii less than 19 mm and improved results for contrasted CT acquisitions. Conclusion: The proposed approach facilitates clinically relevant analysis of dose robustness for human organ segmentation models. The results outline the robustness properties of a diverse set of models. Further studies are needed to identify the robustness of approaches for lesion segmentation and to rank the factors contributing to dose robustness.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Deep Learning Models for Aorta Segmentation in Computed Tomography Images: A Systematic Review And Meta-Analysis
    Wang, Ting-Wei
    Tzeng, Yun-Hsuan
    Hong, Jia-Sheng
    Liu, Ho-Ren
    Wu, Kuan-Ting
    Fu, Hao-Neng
    Lee, Yung-Tsai
    Yin, Wei-Hsian
    Wu, Yu-Te
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2024, 44 (04) : 489 - 498
  • [2] Deep Learning Based Identification and Segmentation of Lung Tumors on Computed Tomography Images
    Kashyap, M.
    Panjwani, N.
    Hasan, M. A. S. A.
    Huang, C.
    Bush, K.
    Dong, P.
    Zaky, S. S.
    Chin, A. L.
    Vitzthum, L.
    Loo, B. W., Jr.
    Diehn, M.
    Xing, L.
    Gensheimer, M. F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E92 - E93
  • [3] Deep learning-based Pulmonary Arterial Segmentation in Computed Tomography Images
    Merchan, Mishell
    Suarez, Juan
    Pertuz, Said
    2024 XXIV SYMPOSIUM OF IMAGE, SIGNAL PROCESSING, AND ARTIFICIAL VISION, STSIVA 2024, 2024,
  • [4] Liver segmentation from computed tomography images using cascade deep learning
    Araujo, Jose Denes Lima
    da Cruz, Luana Batista
    Diniz, Joao Otavio Bandeira
    Ferreira, Jonnison Lima
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [5] Robustness of deep learning segmentation of cardiac substructures in noncontrast computed tomography for breast cancer radiotherapy
    Jin, Xiyao
    Thomas, Maria A.
    Dise, Joseph
    Kavanaugh, James
    Hilliard, Jessica
    Zoberi, Imran
    Robinson, Clifford G.
    Hugo, Geoffrey D.
    MEDICAL PHYSICS, 2021, 48 (11) : 7172 - 7188
  • [6] Web-Based Spine Segmentation Using Deep Learning in Computed Tomography Images
    Kim, Young Jae
    Ganbold, Bilegt
    Kim, Kwang Gi
    HEALTHCARE INFORMATICS RESEARCH, 2020, 26 (01) : 61 - 67
  • [7] Deep-Learning-Based Automatic Segmentation of Parotid Gland on Computed Tomography Images
    Onder, Merve
    Evli, Cengiz
    Tuerk, Ezgi
    Kazan, Orhan
    Bayrakdar, Ibrahim Sevki
    Celik, Ozer
    Costa, Andre Luiz Ferreira
    Gomes, Joao Pedro Perez
    Ogawa, Celso Massahiro
    Jagtap, Rohan
    Orhan, Kaan
    DIAGNOSTICS, 2023, 13 (04)
  • [8] Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning
    Badran, Aly
    Marshall, David
    Legault, Zacharie
    Makovetsky, Ruslana
    Provencher, Benjamin
    Piche, Nicolas
    Marsh, Mike
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (34) : 16273 - 16289
  • [9] Morphology-guided deep learning framework for segmentation of pancreas in computed tomography images
    Qureshi, Touseef Ahmad
    Lynch, Cody
    Azab, Linda
    Xie, Yibin
    Gaddam, Srinavas
    Pandol, Stepehen Jacob
    Li, Debiao
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (02) : 24002
  • [10] Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning
    Aly Badran
    David Marshall
    Zacharie Legault
    Ruslana Makovetsky
    Benjamin Provencher
    Nicolas Piché
    Mike Marsh
    Journal of Materials Science, 2020, 55 : 16273 - 16289