Dose robustness of deep learning models for anatomic segmentation of computed tomography images

被引:0
|
作者
Tsanda, Artyom [1 ,2 ]
Nickisch, Hannes [2 ]
Wissel, Tobias [2 ]
Klinder, Tobias [2 ]
Knopp, Tobias [1 ,3 ]
Grass, Michael [2 ]
机构
[1] Hamburg Univ Technol, Inst Biomed Imaging, Hamburg, Germany
[2] Philips Innovat Technol, Hamburg, Germany
[3] Univ Med Ctr Hamburg Eppendorf, Sect Biomed Imaging, Hamburg, Germany
关键词
low-dose computed tomography; semantic segmentation; denoising; deep learning; CT; NOISE; REDUCTION; LUNG;
D O I
10.1117/1.JMI.11.4.044005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The trend towards lower radiation doses and advances in computed tomography (CT) reconstruction may impair the operation of pretrained segmentation models, giving rise to the problem of estimating the dose robustness of existing segmentation models. Previous studies addressing the issue suffer either from a lack of registered low- and full-dose CT images or from simplified simulations. Approach: We employed raw data from full-dose acquisitions to simulate low-dose CT scans, avoiding the need to rescan a patient. The accuracy of the simulation is validated using a real CT scan of a phantom. We consider down to 20% reduction of radiation dose, for which we measure deviations of several pretrained segmentation models from the full-dose prediction. In addition, compatibility with existing denoising methods is considered. Results: The results reveal the surprising robustness of the TotalSegmentator approach, showing minimal differences at the pixel level even without denoising. Less robust models show good compatibility with the denoising methods, which help to improve robustness in almost all cases. With denoising based on a convolutional neural network (CNN), the median Dice between low- and full-dose data does not fall below 0.9 (12 for the Hausdorff distance) for all but one model. We observe volatile results for labels with effective radii less than 19 mm and improved results for contrasted CT acquisitions. Conclusion: The proposed approach facilitates clinically relevant analysis of dose robustness for human organ segmentation models. The results outline the robustness properties of a diverse set of models. Further studies are needed to identify the robustness of approaches for lesion segmentation and to rank the factors contributing to dose robustness.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images
    Lee, I-Cheng
    Tsai, Yung-Ping
    Lin, Yen-Cheng
    Chen, Ting-Chun
    Yen, Chia-Heng
    Chiu, Nai-Chi
    Hwang, Hsuen-En
    Liu, Chien-An
    Huang, Jia-Guan
    Lee, Rheun-Chuan
    Chao, Yee
    Ho, Shinn-Ying
    Huang, Yi-Hsiang
    CANCER IMAGING, 2024, 24 (01)
  • [42] Segmentation of computed tomography images and high-precision reconstruction of rubber composite structure based on deep learning
    Yang, Heng
    Wang, WenFeng
    Shang, JiaChen
    Wang, PanDing
    Lei, Hongshuai
    Chen, Hao-sen
    Fang, DaiNing
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 213
  • [43] Automatic cervical lymph nodes detection and segmentation in heterogeneous computed tomography images using deep transfer learning
    Liao, Wenjun
    Luo, Xiangde
    Li, Lu
    Xu, Jinfeng
    He, Yuan
    Huang, Hui
    Zhang, Shichuan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [44] Deep-Learning Segmentation of Urinary Stones in Noncontrast Computed Tomography
    Kim, Young In
    Song, Sang Hoon
    Park, Juhyun
    Youn, Hye Jung
    Kweon, Jihoon
    Park, Hyung Keun
    JOURNAL OF ENDOUROLOGY, 2023, 37 (05) : 595 - 606
  • [45] A deep learning approach to segmentation of nasopharyngeal carcinoma using computed tomography
    Bai, Xiaoyu
    Hu, Yan
    Gong, Guanzhong
    Yin, Yong
    Xia, Yong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 64
  • [46] Detection of Covid-19 from Computed Tomography Images with DenseNet Based Deep Learning Models
    Ala, Alican
    Polat, Ozlem
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [47] Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images
    Song, QingZeng
    Zhao, Lei
    Luo, XingKe
    Dou, XueChen
    JOURNAL OF HEALTHCARE ENGINEERING, 2017, 2017
  • [48] Lung Nodule Classification on Computed Tomography Images Using Deep Learning
    Amrita Naik
    Damodar Reddy Edla
    Wireless Personal Communications, 2021, 116 : 655 - 690
  • [49] Deep learning for automated cerebral aneurysm detection on computed tomography images
    Dai, Xilei
    Huang, Lixiang
    Qian, Yi
    Xia, Shuang
    Chong, Winston
    Liu, Junjie
    Di Ieva, Antonio
    Hou, Xiaoxi
    Ou, Chubin
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (04) : 715 - 723
  • [50] Lung Nodule Classification on Computed Tomography Images Using Deep Learning
    Naik, Amrita
    Edla, Damodar Reddy
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 116 (01) : 655 - 690