Minimum aberration (S2) Sn-k designs

被引:1
|
作者
Zhang, RC [1 ]
Shao, Q
机构
[1] Nankai Univ, Dept Stat, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Univ Georgia, Dept Stat, Athens, GA 30602 USA
关键词
asymmetrical factorial design; fractional factorial designs; grouping scheme; minimum aberration;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper extends the 4(m)2(n) minimum aberration designs (MA designs) of Wu and Zhang (1993) to the case of (S-2)Sn-k, where S is any prime or prime power. Some basic properties of (S-2)Sn-k MA designs, including the relations with Sn-k MA designs, are discussed. The (9)3(n-k) MA designs with 27 runs and (16)4(n-k) MA designs with 64 runs are tabulated, and some (4)2(n-k) MA designs are constructed using the above relations.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条
  • [21] Flag-transitive block designs with automorphism group Sn wr S2
    Braic, Snjeana
    Mandic, Josko
    Vucicic, Tanja
    [J]. DISCRETE MATHEMATICS, 2018, 341 (08) : 2220 - 2230
  • [22] A Simple Method for Obtaining Minimum Aberration Designs
    Wang, P. C.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (18) : 3363 - 3370
  • [23] Algorithmic search for baseline minimum aberration designs
    Li, Pei
    Miller, Arden
    Tang, Boxin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 149 : 172 - 182
  • [24] Algorithms for finding generalized minimum aberration designs
    Bulutoglu, Dursun A.
    Ryan, Kenneth J.
    [J]. JOURNAL OF COMPLEXITY, 2015, 31 (04) : 577 - 589
  • [25] Minimum aberration designs for discrete choice experiments
    Jaynes J.
    Xu H.
    Wong W.K.
    [J]. Journal of Statistical Theory and Practice, 2017, 11 (2) : 339 - 360
  • [26] OPTIMAL RESOLVABLE DESIGNS WITH MINIMUM PV ABERRATION
    Morgan, J. P.
    [J]. STATISTICA SINICA, 2010, 20 (02) : 715 - 732
  • [27] Minimum G2-aberration for nonregular fractional factorial designs
    Tang, BX
    Deng, LY
    [J]. ANNALS OF STATISTICS, 1999, 27 (06): : 1914 - 1926
  • [28] The s-energy of spherical designs on S2
    Hesse, Kerstin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2009, 30 (01) : 37 - 59
  • [29] The s-energy of spherical designs on S2
    Kerstin Hesse
    [J]. Advances in Computational Mathematics, 2009, 30 : 37 - 59
  • [30] The Coulomb energy of spherical designs on S2
    Kerstin Hesse
    Paul Leopardi
    [J]. Advances in Computational Mathematics, 2008, 28 : 331 - 354