The s-energy of spherical designs on S2

被引:7
|
作者
Hesse, Kerstin [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Acceleration of convergence; Energy; Equal weight cubature; Equal weight numerical integration; Orthogonal polynomials; Sphere; Spherical design; Well separated point sets on sphere; MINIMAL DISCRETE ENERGY; ASYMPTOTICS; DISTANCES; CUBATURE; SURFACE;
D O I
10.1007/s10444-007-9057-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the s-energy of (finite and infinite) well separated sequences of spherical designs on the unit sphere S-2. A spherical n-design is a point set on S-2 that gives rise to an equal weight cubature rule which is exact for all spherical polynomials of degree <= n. The s-energy E-s(X) of a point set X = {x(1),..., x(m)} subset of S-2 of m distinct points is the sum of the potential parallel to x(i) - x(j) parallel to(-s) for all pairs of distinct points x(i), x(j) epsilon X. A sequence Xi = {X-m} of point sets X-m subset of S-2, where Xm has the cardinality card (X-m) = m, is well separated if arccos(x(i) center dot x(j)) >= lambda/root m for each pair of distinct points x(i), x(j) epsilon X-m, where the constant lambda is independent of m and X-m. For all s > 0, we derive upper bounds in terms of orders of n and m(n) of the s-energy Es(X-m(n)) for well separated sequences Xi = {X-m(n)} of spherical n-designs X-m(n) with card (X-m(n)) = m(n).
引用
收藏
页码:37 / 59
页数:23
相关论文
共 50 条
  • [1] The s-energy of spherical designs on S2
    Kerstin Hesse
    [J]. Advances in Computational Mathematics, 2009, 30 : 37 - 59
  • [2] The Coulomb energy of spherical designs on S2
    Kerstin Hesse
    Paul Leopardi
    [J]. Advances in Computational Mathematics, 2008, 28 : 331 - 354
  • [3] The Coulomb energy of spherical designs on S2
    Hesse, Kerstin
    Leopardi, Paul
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 28 (04) : 331 - 354
  • [4] E(s2)- and UE(s2)-optimal supersaturated designs
    Cheng, Ching-Shui
    Das, Ashish
    Singh, Rakhi
    Tsai, Pi-Wen
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 196 : 105 - 114
  • [5] EXAMPLES OF SPHERICAL BUNDLES ON S2
    KOESTNER, A
    [J]. MATHEMATISCHE ANNALEN, 1976, 220 (03) : 211 - 213
  • [6] THE TOTAL s-ENERGY OF A MULTIAGENT SYSTEM
    Chazelle, Bernard
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (04) : 1680 - 1706
  • [7] On A-energy and S-energy of certain class of graphs
    Ramane, Harishchandra S.
    Parvathalu, B.
    Ashoka, K.
    Patil, Daneshwari
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2021, 13 (02) : 195 - 219
  • [8] SUE(s2)-optimal supersaturated designs
    Singh, Rakhi
    Das, Ashish
    Horsley, Daniel
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [9] On E(s2)-optimal supersaturated designs
    Das, Ashish
    Dey, Aloke
    Chan, Ling-Yau
    Chatterjee, Kashinath
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 3749 - 3757
  • [10] Construction of E(s2)-optimal supersaturated designs
    Bulutoglu, DA
    Cheng, CS
    [J]. ANNALS OF STATISTICS, 2004, 32 (04): : 1662 - 1678