On the average cost of order-preserving encryption based on hypergeometric distribution

被引:2
|
作者
Yum, Dae Hyun [1 ]
Lee, Pil Joong [1 ]
机构
[1] POSTECH, EEE, Informat Secur Lab, Pohang 790784, Kyungbuk, South Korea
关键词
Cryptography; Order-preserving encryption; Hypergeometric distribution;
D O I
10.1016/j.ipl.2011.07.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Order-preserving encryption (OPE) is a deterministic encryption scheme whose encryption function preserves numerical ordering of the plaintexts. The first provably-secure OPE scheme was constructed by Boldyreva, Chenette, Lee, and O'Neill. The BCLO scheme is based on a sampling algorithm for the hypergeometric distribution and is known to call the sampling algorithm at most 5 log M + 12 times on average where M is the size of the plaintext-space. We show that the BCLO scheme actually calls the sampling algorithm less than log M + 3 times on average. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:956 / 959
页数:4
相关论文
共 50 条
  • [21] Order-Preserving Encryption Secure Beyond One-Wayness
    Teranishi, Isamu
    Yung, Moti
    Malkin, Tal
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2014, PT II, 2014, 8874 : 42 - 61
  • [22] Order-Preserving Encryption Using Approximate Integer Common Divisors
    Dyer, James
    Dyer, Martin
    Xu, Jie
    DATA PRIVACY MANAGEMENT, CRYPTOCURRENCIES AND BLOCKCHAIN TECHNOLOGY, 2017, 10436 : 257 - 274
  • [23] Practical Application of Order-preserving Encryption in Wide Column Stores
    Waage, Tim
    Homann, Daniel
    Wiese, Lena
    SECRYPT: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON E-BUSINESS AND TELECOMMUNICATIONS - VOL. 4, 2016, : 352 - 359
  • [24] Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes
    Crochemore, Maxime
    Iliopoulos, Costas S.
    Kociumaka, Tomasz
    Kubica, Marcin
    Langiu, Alessio
    Pissis, Solon P.
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2013), 2013, 8214 : 84 - 95
  • [25] Exploring the Security Vulnerability in Frequency-Hiding Order-Preserving Encryption
    Yang, Jihye
    Kim, Kee Sung
    Security and Communication Networks, 2024, 2024
  • [26] Efficient Construction of Order-Preserving Encryption Using Pseudo Random Function
    Jho, Nam-Su
    Chang, Ku-Young
    Hong, Do-Won
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2015, E98B (07) : 1276 - 1283
  • [27] Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative Solutions
    Boldyreva, Alexandra
    Chenette, Nathan
    O'Neill, Adam
    ADVANCES IN CRYPTOLOGY - CRYPTO 2011, 2011, 6841 : 578 - 595
  • [28] Frequency-Hiding Order-Preserving Encryption with Small Client Storage
    Li, Dongjie
    Lv, Siyi
    Huang, Yanyu
    Liu, Yijing
    Li, Tong
    Liu, Zheli
    Guo, Liang
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (13): : 3295 - 3307
  • [29] Practical Frequency-Hiding Order-Preserving Encryption with Improved Update
    Yang, JiHye
    Kim, Kee Sung
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [30] BOPE: Boundary Order-Preserving Encryption Scheme in Relational Database System
    Chen, Si
    Li, Lin
    Zhang, Wenyu
    Chang, Xiaolin
    Han, Zhen
    IEEE ACCESS, 2021, 9 : 30124 - 30134