Convolutional frames and the frame potential

被引:23
|
作者
Fickus, M [1 ]
Johnson, BD
Kornelson, K
Okoudjou, KA
机构
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
[2] USAF, Inst Technol, Dept Math & Stat, Wright Patterson AFB, OH 45433 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
filter bank; frame; potential; convolution;
D O I
10.1016/j.acha.2005.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recently introduced notion of frame potential has proven useful for the characterization of finite-dimensional tight frames. The present work represents an effort to similarly characterize finite-dimensional tight frames with additional imposed structure. In particular, it is shown that the frame potential still leads to a complete description of tight frames when restricted to the class of translation-invariant systems. It is natural to refer to such frames as convolutional because of the correspondence between translation-invariant systems and finite-dimensional filter banks. The fast algorithms associated with convolution represent one possible advantage over nonconvolutional frames in applications. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 50 条
  • [22] FRAME OPERATORS AND SEMI-FRAME OPERATORS OF FINITE GABOR FRAMES
    Namboothiri, N. M. Madhavan
    Nambudiri, T. C. Easwaran
    Thomas, Jineesh
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2021, 28 (04): : 315 - 328
  • [23] 3 FRAMES SUFFICE - DROP THE RETINOTOPIC FRAME
    HABER, RN
    BEHAVIORAL AND BRAIN SCIENCES, 1985, 8 (02) : 295 - 295
  • [24] Frame Bounds for Gabor Frames in Finite Dimensions
    Salanevich, Palina
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [25] Frame Fountain: Coding and Decoding MAC Frames
    Yao, Qingmei
    Tang, Chong
    Wu, Shaoen
    2011 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2011, : 66 - 71
  • [26] Preconditioning techniques in frame theory and probabilistic frames
    Okoudjou, Kasso A.
    FINITE FRAME THEORY: A COMPLETE INTRODUCTION TO OVERCOMPLETENESS, 2016, 73 : 105 - 142
  • [27] The congruence frame and the Madden quotient for partial frames
    John L. Frith
    Anneliese Schauerte
    Algebra universalis, 2018, 79
  • [28] Frames of subspaces and approximation of the inverse frame operator
    Khosravi, Amir
    Asgari, Mohammad Sadegh
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (03): : 907 - 920
  • [29] The congruence frame and the Madden quotient for partial frames
    Frith, John L.
    Schauerte, Anneliese
    ALGEBRA UNIVERSALIS, 2018, 79 (03)
  • [30] Frame dragging and Eulerian frames in general relativity
    Rampf, Cornelius
    PHYSICAL REVIEW D, 2014, 89 (06):