Hamiltonicity of edge-chromatic critical graphs

被引:1
|
作者
Cao, Yan [1 ]
Chen, Guantao [1 ]
Jiang, Suyun [2 ]
Liu, Huiqing [3 ]
Lu, Fuliang [4 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Jianghan Univ, Inst Interdisciplinary Res, Wuhan 430056, Hubei, Peoples R China
[3] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China
[4] Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Peoples R China
关键词
Edge-k-coloring; Edge-critical graphs; Hamiltonicity; CONJECTURE;
D O I
10.1016/j.disc.2020.111881
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G, denote by Delta(G) and chi'(G) the maximum degree and the chromatic index of G, respectively. A simple graph G is called edge-Delta-critical if Delta(G) = Delta, chi'(G) = Delta + 1 and chi'(H) <= Delta for every proper subgraph H of G. We prove that every edge-A-critical graph of order n with maximum degree at least 2n/3+ 12 is Hamiltonian. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] The spectral radius of edge chromatic critical graphs
    Feng, Lihua
    Cao, Jianxiang
    Liu, Weijun
    Ding, Shifeng
    Liu, Henry
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 492 : 78 - 88
  • [32] On the Independence Number of Edge Chromatic Critical Graphs
    Miao Lianying
    [J]. ARS COMBINATORIA, 2011, 98 : 471 - 481
  • [33] Remarks on the size of critical edge chromatic graphs
    Clark, LH
    Haile, D
    [J]. DISCRETE MATHEMATICS, 1997, 171 (1-3) : 287 - 293
  • [34] ON THE INDEPENDENCE NUMBER OF EDGE CHROMATIC CRITICAL GRAPHS
    Pang, Shiyou
    Miao, Lianying
    Song, Wenyao
    Miao, Zhengke
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (03) : 577 - 584
  • [35] On the average degree of edge chromatic critical graphs
    Cao, Yan
    Chen, Guantao
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 147 : 299 - 338
  • [36] A new lower bound on the order of a critical edge-chromatic graph with given small girth
    Haile, D
    [J]. UTILITAS MATHEMATICA, 1996, 49 : 97 - 152
  • [37] A Class of Edge Critical 4-Chromatic Graphs
    Guantao Chen
    Paul Erdős
    András Gyárfás
    R. H. Schelp
    [J]. Graphs and Combinatorics, 1997, 13 : 139 - 146
  • [38] On the average degree of edge chromatic critical graphs II
    Cao, Yan
    Chen, Guantao
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 470 - 486
  • [39] Critical graphs for the chromatic edge-stability number
    Bresar, Bostjan
    Klavzar, Sandi
    Movarraei, Nazanin
    [J]. DISCRETE MATHEMATICS, 2020, 343 (06)
  • [40] A class of edge critical 4-chromatic graphs
    Chen, GT
    Erdos, P
    Gyarfas, A
    Schelp, RH
    [J]. GRAPHS AND COMBINATORICS, 1997, 13 (02) : 139 - 146