Critical graphs for the chromatic edge-stability number

被引:8
|
作者
Bresar, Bostjan [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Movarraei, Nazanin [4 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Yazd Univ, Dept Math, Yazd, Iran
关键词
Chromatic edge-stability; Edge-stability critical graph; Odd cycle; Computational complexity; FRUSTRATION;
D O I
10.1016/j.disc.2020.111845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic- edge-stability number es(chi) (G) of a graph G is the minimum number of edges whose removal results in a spanning subgraph G' with chi(G') = chi(G) - 1. Edge-stability critical graphs are introduced as the graphs G with the property that es(chi) (G- e) < es(chi) (G) holds for every edge e. E(G). If G is an edge-stability critical graph with.(G) = k and es(chi) (G) = l, then G is (k, l)-critical. Graphs which are (3, 2)-critical and contain at most four odd cycles are classified. It is also proved that the problem of deciding whether a graph G has chi(G) = k and is critical for the chromatic number can be reduced in polynomial time to the problem of deciding whether a graph is (k, 2)-critical. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On critical graphs for the chromatic edge-stability number
    Lei, Hui
    Lian, Xiaopan
    Meng, Xianhao
    Shi, Yongtang
    Wang, Yiqiao
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [2] On the Chromatic Edge Stability Number of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Nazanin Movarraei
    Graphs and Combinatorics, 2018, 34 : 1539 - 1551
  • [3] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [4] Nordhaus-Gaddum and other bounds for the chromatic edge-stability number
    Akbari, Saieed
    Klavzar, Sandi
    Movarraei, Nazanin
    Nahvi, Mina
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 84
  • [5] On the Independence Number of Edge Chromatic Critical Graphs
    Miao Lianying
    ARS COMBINATORIA, 2011, 98 : 471 - 481
  • [6] ON THE INDEPENDENCE NUMBER OF EDGE CHROMATIC CRITICAL GRAPHS
    Pang, Shiyou
    Miao, Lianying
    Song, Wenyao
    Miao, Zhengke
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (03) : 577 - 584
  • [7] On the edge chromatic vertex stability number of graphs
    Alikhani, Saeid
    Piri, Mohammad R.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 29 - 34
  • [8] On the total chromatic edge stability number and the total chromatic subdivision number of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 1 - 8
  • [9] Independence number of edge-chromatic critical graphs
    Cao, Yan
    Chen, Guantao
    Jing, Guangming
    Shan, Songling
    JOURNAL OF GRAPH THEORY, 2022, 101 (02) : 288 - 310
  • [10] A New Upper Bound for the Independence Number of Edge Chromatic Critical Graphs
    Luo, Rong
    Zhao, Yue
    JOURNAL OF GRAPH THEORY, 2011, 68 (03) : 202 - 212