Critical graphs for the chromatic edge-stability number
被引:8
|
作者:
Bresar, Bostjan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Maribor, Slovenia
Bresar, Bostjan
[1
,2
]
Klavzar, Sandi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Maribor, Slovenia
The chromatic- edge-stability number es(chi) (G) of a graph G is the minimum number of edges whose removal results in a spanning subgraph G' with chi(G') = chi(G) - 1. Edge-stability critical graphs are introduced as the graphs G with the property that es(chi) (G- e) < es(chi) (G) holds for every edge e. E(G). If G is an edge-stability critical graph with.(G) = k and es(chi) (G) = l, then G is (k, l)-critical. Graphs which are (3, 2)-critical and contain at most four odd cycles are classified. It is also proved that the problem of deciding whether a graph G has chi(G) = k and is critical for the chromatic number can be reduced in polynomial time to the problem of deciding whether a graph is (k, 2)-critical. (C) 2020 Elsevier B.V. All rights reserved.
机构:
Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Hubei, Peoples R ChinaGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Chen, Guantao
Chen, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R ChinaGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Chen, Xiaodong
Zhao, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cent Florida, Dept Math, Orlando, FL 32816 USAGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaSharif Univ Technol, Dept Math Sci, Tehran, Iran