Critical graphs for the chromatic edge-stability number

被引:8
|
作者
Bresar, Bostjan [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Movarraei, Nazanin [4 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Yazd Univ, Dept Math, Yazd, Iran
关键词
Chromatic edge-stability; Edge-stability critical graph; Odd cycle; Computational complexity; FRUSTRATION;
D O I
10.1016/j.disc.2020.111845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic- edge-stability number es(chi) (G) of a graph G is the minimum number of edges whose removal results in a spanning subgraph G' with chi(G') = chi(G) - 1. Edge-stability critical graphs are introduced as the graphs G with the property that es(chi) (G- e) < es(chi) (G) holds for every edge e. E(G). If G is an edge-stability critical graph with.(G) = k and es(chi) (G) = l, then G is (k, l)-critical. Graphs which are (3, 2)-critical and contain at most four odd cycles are classified. It is also proved that the problem of deciding whether a graph G has chi(G) = k and is critical for the chromatic number can be reduced in polynomial time to the problem of deciding whether a graph is (k, 2)-critical. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] REGULAR GRAPHS AND EDGE CHROMATIC NUMBER
    FAUDREE, RJ
    SHEEHAN, J
    DISCRETE MATHEMATICS, 1984, 48 (2-3) : 197 - 204
  • [12] Edge-face chromatic number and edge chromatic number of simple plane graphs
    Luo, R
    Zhang, CQ
    JOURNAL OF GRAPH THEORY, 2005, 49 (03) : 234 - 256
  • [13] Hamiltonicity of edge chromatic critical graphs
    Chen, Guantao
    Chen, Xiaodong
    Zhao, Yue
    DISCRETE MATHEMATICS, 2017, 340 (12) : 3011 - 3015
  • [14] On the size of edge chromatic critical graphs
    Sanders, DP
    Zhao, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 86 (02) : 408 - 412
  • [15] STABILITY NUMBER AND CHROMATIC NUMBER OF TOLERANCE GRAPHS
    NARASIMHAN, G
    MANBER, R
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (01) : 47 - 56
  • [16] Graphs that are Critical for the Packing Chromatic Number
    Bresar, Bostjan
    Ferme, Jasmina
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (02) : 569 - 589
  • [17] On the chromatic edge stability index of graphs
    Akbari, Saieed
    Beikmohammadi, Arash
    Bresar, Bostjan
    Dravec, Tanja
    Habibollahi, Mohammad Mahdi
    Movarraei, Nazanin
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 111
  • [18] GRAPHS WHICH ARE VERTEX-CRITICAL WITH RESPECT TO THE EDGE-CHROMATIC NUMBER
    HILTON, AJW
    JOHNSON, PD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 102 : 211 - 221
  • [19] A note on Vizing's independence number conjecture of edge chromatic critical graphs
    Luo, Rong
    Zhao, Yue
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1788 - 1790
  • [20] On the chromatic vertex stability number of graphs
    Akbari, Saieed
    Beikmohammadi, Arash
    Klavzar, Sandi
    Movarraei, Nazanin
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102