Environmental DNA metabarcoding: Transforming how we survey animal and plant communities

被引:977
|
作者
Deiner, Kristy [1 ]
Bik, Holly M. [2 ]
Machler, Elvira [3 ,4 ]
Seymour, Mathew [5 ]
Lacoursiere-Roussel, Anais [6 ]
Altermatt, Florian [3 ,4 ]
Creer, Simon [5 ]
Bista, Iliana [5 ,7 ]
Lodge, David M. [1 ]
de Vere, Natasha [8 ,9 ]
Pfrender, Michael E. [10 ]
Bernatchez, Louis [6 ]
机构
[1] Cornell Univ, Dept Ecol & Evolutionary Biol, Atkinson Ctr Sustainable Future, Ithaca, NY USA
[2] Univ Calif Riverside, Dept Nematol, Riverside, CA 92521 USA
[3] Swiss Fed Inst Aquat Sci & Technol, Dept Aquat Ecol, Eawag, Dubendorf, Switzerland
[4] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Zurich, Switzerland
[5] Bangor Univ, Sch Biol Sci, Mol Ecol & Fisheries Genet Lab, Environm Ctr Wales Bldg, Bangor, Gwynedd, Wales
[6] Univ Laval, IBIS, Quebec City, PQ, Canada
[7] Wellcome Trust Sanger Inst, Hinxton, Cambs, England
[8] Natl Bot Garden Wales, Conservat & Res Dept, Llanarthne, Carmarthenshire, Wales
[9] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth, Dyfed, Wales
[10] Univ Notre Dame, Dept Biol Sci & Environm Change Initiat, Notre Dame, IN 46556 USA
基金
美国国家科学基金会; 瑞士国家科学基金会; 英国自然环境研究理事会; 美国海洋和大气管理局;
关键词
bioinformatic pipeline; biomonitoring; citizen science; conservation; ecology; eDNA; invasive species; macro-organism; species richness; RIBOSOMAL-RNA SEQUENCES; GREAT CRESTED NEWT; ARCTIC VEGETATION; EXTRACELLULAR DNA; SPECIES DETECTION; FISH COMMUNITIES; LARGE-SCALE; BIODIVERSITY; WATER; EDNA;
D O I
10.1111/mec.14350
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High-throughput sequencing ("HTS") platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed "environmental DNA" or "eDNA"). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called "eDNA metabarcoding" and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.
引用
收藏
页码:5872 / 5895
页数:24
相关论文
共 50 条
  • [41] A RETROSPECTIVE LOOK - HOW WE IDENTIFIED THE PNEUMOCOCCAL TRANSFORMING SUBSTANCE AS DNA
    MCCARTY, M
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (02): : 385 - 394
  • [42] Environmental DNA reveals landscape mosaic of wetland plant communities
    Shackleton, M. E.
    Rees, Gavin N.
    Watson, G.
    Campbell, C.
    Nielsen, D.
    [J]. GLOBAL ECOLOGY AND CONSERVATION, 2019, 19
  • [43] Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?
    Deagle, Bruce E.
    Thomas, Austen C.
    McInnes, Julie C.
    Clarke, Laurence J.
    Vesterinen, Eero J.
    Clare, Elizabeth L.
    Kartzinel, Tyler R.
    Eveson, J. Paige
    [J]. MOLECULAR ECOLOGY, 2019, 28 (02) : 391 - 406
  • [44] Comparison of fish communities using environmental DNA metabarcoding and capture methods in a plateau Erhai Lake, China
    Chen, Hong
    He, Wanchao
    Yang, Fenge
    Liao, Li
    Yin, Chengjie
    Chen, Yushun
    Guo, Longgen
    [J]. JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2024,
  • [45] Spatial abundance and distribution of picocyanobacterial communities in two contrasting lakes revealed using environmental DNA metabarcoding
    Schallenberg, Lena A.
    Pearman, John K.
    Burns, Carolyn W.
    Wood, Susanna A.
    [J]. FEMS MICROBIOLOGY ECOLOGY, 2021, 97 (07)
  • [46] Metabarcoding on both environmental DNA and RNA highlights differences between fungal communities sampled in different habitats
    Adamo, Martino
    Voyron, Samuele
    Chialva, Matteo
    Marmeisse, Roland
    Girlanda, Mariangela
    [J]. PLOS ONE, 2020, 15 (12):
  • [47] Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals
    Harper, Lynsey R.
    Handley, Lori Lawson
    Carpenter, Angus I.
    Ghazali, Muhammad
    Di Muri, Cristina
    Macgregor, Callum J.
    Logan, Thomas W.
    Law, Alan
    Breithaupt, Thomas
    Read, Daniel S.
    McDevitt, Allan D.
    Hanfling, Bernd
    [J]. BIOLOGICAL CONSERVATION, 2019, 238
  • [48] Animal-sourced model of human norovirus infection predicted using environmental DNA metabarcoding analysis
    Sato, Yukuto
    Yasuda, Jun
    Sakurai, Masahiro
    [J]. JOURNAL OF FRESHWATER ECOLOGY, 2024, 39 (01)
  • [49] Estimation of biodiversity metrics by environmental DNA metabarcoding compared with visual and capture surveys of river fish communities
    Doi, Hideyuki
    Inui, Ryutei
    Matsuoka, Shunsuke
    Akamatsu, Yoshihisa
    Goto, Masuji
    Kono, Takanori
    [J]. FRESHWATER BIOLOGY, 2021, 66 (07) : 1257 - 1266
  • [50] Comparison of fish communities using environmental DNA metabarcoding and capture methods in a plateau Erhai Lake, China
    Hong CHEN
    Wanchao HE
    Fenge YANG
    Li LIAO
    Chengjie YIN
    Yushun CHEN
    Longgen GUO
    [J]. Journal of Oceanology and Limnology, 2024, 42 (05) : 1597 - 1608