Environmental DNA metabarcoding: Transforming how we survey animal and plant communities

被引:977
|
作者
Deiner, Kristy [1 ]
Bik, Holly M. [2 ]
Machler, Elvira [3 ,4 ]
Seymour, Mathew [5 ]
Lacoursiere-Roussel, Anais [6 ]
Altermatt, Florian [3 ,4 ]
Creer, Simon [5 ]
Bista, Iliana [5 ,7 ]
Lodge, David M. [1 ]
de Vere, Natasha [8 ,9 ]
Pfrender, Michael E. [10 ]
Bernatchez, Louis [6 ]
机构
[1] Cornell Univ, Dept Ecol & Evolutionary Biol, Atkinson Ctr Sustainable Future, Ithaca, NY USA
[2] Univ Calif Riverside, Dept Nematol, Riverside, CA 92521 USA
[3] Swiss Fed Inst Aquat Sci & Technol, Dept Aquat Ecol, Eawag, Dubendorf, Switzerland
[4] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Zurich, Switzerland
[5] Bangor Univ, Sch Biol Sci, Mol Ecol & Fisheries Genet Lab, Environm Ctr Wales Bldg, Bangor, Gwynedd, Wales
[6] Univ Laval, IBIS, Quebec City, PQ, Canada
[7] Wellcome Trust Sanger Inst, Hinxton, Cambs, England
[8] Natl Bot Garden Wales, Conservat & Res Dept, Llanarthne, Carmarthenshire, Wales
[9] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth, Dyfed, Wales
[10] Univ Notre Dame, Dept Biol Sci & Environm Change Initiat, Notre Dame, IN 46556 USA
基金
美国国家科学基金会; 瑞士国家科学基金会; 英国自然环境研究理事会; 美国海洋和大气管理局;
关键词
bioinformatic pipeline; biomonitoring; citizen science; conservation; ecology; eDNA; invasive species; macro-organism; species richness; RIBOSOMAL-RNA SEQUENCES; GREAT CRESTED NEWT; ARCTIC VEGETATION; EXTRACELLULAR DNA; SPECIES DETECTION; FISH COMMUNITIES; LARGE-SCALE; BIODIVERSITY; WATER; EDNA;
D O I
10.1111/mec.14350
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High-throughput sequencing ("HTS") platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed "environmental DNA" or "eDNA"). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called "eDNA metabarcoding" and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.
引用
收藏
页码:5872 / 5895
页数:24
相关论文
共 50 条
  • [21] Airborne environmental DNA metabarcoding detects more diversity, with less sampling effort, than a traditional plant community survey
    Johnson, Mark D.
    Fokar, Mohamed
    Cox, Robert D.
    Barnes, Matthew A.
    [J]. BMC ECOLOGY AND EVOLUTION, 2021, 21 (01):
  • [22] Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system
    Shaw, Jennifer L. A.
    Clarke, Laurence J.
    Wedderburn, Scotte D.
    Barnes, Thomas C.
    Weyrich, Laura S.
    Cooper, Alan
    [J]. BIOLOGICAL CONSERVATION, 2016, 197 : 131 - 138
  • [23] Monitoring estuarine fish communities: environmental DNA (eDNA) metabarcoding as a complement to beach seining
    Saunders, Mark D.
    Steeves, Royce
    Macintyre, Leah P.
    Knysh, Kyle M.
    Coffin, Michael R. S.
    Boudreau, Monica
    Pater, Christina C.
    van den Heuvel, Michael R.
    Courtenay, Simon C.
    [J]. CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2024,
  • [24] Environmental DNA metabarcoding of benthic bacterial communities indicates the benthic footprint of salmon aquaculture
    Stoeck, Thorsten
    Fruehe, Larissa
    Forster, Dominik
    Cordier, Tristan
    Martins, Catarina I. M.
    Pawlowski, Jan
    [J]. MARINE POLLUTION BULLETIN, 2018, 127 : 139 - 149
  • [25] Assessing the impacts of aquaculture on local fish communities using environmental DNA metabarcoding analysis
    Suzuki, Shota
    Otomo, Yuri
    Dazai, Akihiro
    Abe, Takuzo
    Kondoh, Michio
    [J]. ENVIRONMENTAL DNA, 2024, 6 (03):
  • [26] Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation
    Alsos, Inger Greve
    Lammers, Youri
    Yoccoz, Nigel Giles
    Jorgensen, Tina
    Sjogren, Per
    Gielly, Ludovic
    Edwards, Mary E.
    [J]. PLOS ONE, 2018, 13 (04):
  • [27] Responses of foraminifera communities to aquaculture-derived organic enrichment as revealed by environmental DNA metabarcoding
    He, Xiaoping
    Sutherland, Terri F.
    Pawlowski, Jan
    Abbott, Cathryn L.
    [J]. MOLECULAR ECOLOGY, 2019, 28 (05) : 1138 - 1153
  • [28] Environmental DNA metabarcoding reveals temporal dynamics but functional stability of arthropod communities in cattle dung
    Thomassen, Emil Ellegaard
    Sigsgaard, Eva Egelyng
    Jensen, Mads Reinholdt
    Olsen, Kent
    Hansen, Morten D. D.
    Thomsen, Philip Francis
    [J]. JOURNAL OF ANIMAL ECOLOGY, 2024, 93 (08) : 1003 - 1021
  • [29] How cushion plant communities structure nival soil biodiversity: A metabarcoding study in the French Alps
    Dumas, Keyvan
    Rosa, Alexy
    Yannic, Glenn
    Gallet, Christiane
    Calderon-Sanou, Irene
    Lionnet, Clement
    Gielly, Ludovic
    Thuiller, Wilfried
    Lavergne, Sebastien
    Ibanez, Sebastien
    [J]. BASIC AND APPLIED ECOLOGY, 2024, 80 : 49 - 60
  • [30] Non-destructive collection and metabarcoding of arthropod environmental DNA remained on a terrestrial plant
    Kinuyo Yoneya
    Masayuki Ushio
    Takeshi Miki
    [J]. Scientific Reports, 13