Bifurcations and traveling wave solutions for a fourth-order integrable nonlinear Schrodinger equation

被引:3
|
作者
Liu, Minghuan [1 ]
Zheng, Yuanguang [1 ]
机构
[1] Nanchang Hangkong Univ, Coll Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R China
来源
OPTIK | 2022年 / 255卷
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Periodic wave solution; Anti-kink wave solution; Kink wave solution; Singular wave; TANH METHOD; EVOLUTION; DISCRETE; SOLITONS;
D O I
10.1016/j.ijleo.2022.168632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we study a fourth-order integrable nonlinear Schrodinger equation by bifurcation method of differential dynamical system. The study of the plane traveling wave system derives a binary Hamiltonian function. Based on Hamiltonian function, we obtain the bifurcation of the plane traveling wave system. Unfortunately, the Hamiltonian function is a hyper-elliptic function, it is impossible to find all bounded traveling wave solutions. We have to consider the traveling wave solution under some special parameter conditions. At the same time, we use the modified simplest equation method to find more traveling wave solutions for the fourth-order integrable nonlinear Schrodinger equation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] BIFURCATIONS OF TRAVELING WAVE SOLUTIONS AND EXACT SOLUTIONS FOR THE GENERALIZED SCHRODINGER EQUATION
    Zhang, Jianming
    Li, Shuming
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2623 - 2628
  • [32] Global existence for rough solutions of a fourth-order nonlinear wave equation
    Zhang, Junyong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) : 635 - 644
  • [33] On Blow-Up Solutions for the Fourth-Order Nonlinear Schrodinger Equation with Mixed Dispersions
    Niu, Huiling
    Youssouf, Abdoulaye Ali
    Feng, Binhua
    [J]. AXIOMS, 2024, 13 (03)
  • [34] Systematic study of rogue wave probability distributions in a fourth-order nonlinear Schrodinger equation
    Ying, L. H.
    Kaplan, L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2012, 117
  • [35] Limiting Profile of the Blow-up Solutions for the Fourth-order Nonlinear Schrodinger Equation
    Zhu, Shihui
    Zhang, Jian
    Yang, Han
    [J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 7 (02) : 187 - 205
  • [36] Asymptotics for the fourth-order nonlinear Schrodinger equation in the critical case
    Hayashi, Nakao
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 5144 - 5179
  • [37] Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrodinger Equation
    Zhang, Yan
    Liu, Yinping
    Tang, Xiaoyan
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (04): : 339 - 344
  • [38] Large time asymptotics for the fourth-order nonlinear Schrodinger equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (03) : 880 - 905
  • [39] Dynamics of solitons in the fourth-order nonlocal nonlinear Schrodinger equation
    Gadzhimuradov, T. A.
    Agalarov, A. M.
    Radha, R.
    Arasan, B. Tamil
    [J]. NONLINEAR DYNAMICS, 2020, 99 (02) : 1295 - 1300
  • [40] A fourth-order explicit schemes for the coupled nonlinear Schrodinger equation
    Ismail, M. S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) : 273 - 284