Bifurcations and traveling wave solutions for a fourth-order integrable nonlinear Schrodinger equation

被引:3
|
作者
Liu, Minghuan [1 ]
Zheng, Yuanguang [1 ]
机构
[1] Nanchang Hangkong Univ, Coll Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R China
来源
OPTIK | 2022年 / 255卷
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Periodic wave solution; Anti-kink wave solution; Kink wave solution; Singular wave; TANH METHOD; EVOLUTION; DISCRETE; SOLITONS;
D O I
10.1016/j.ijleo.2022.168632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we study a fourth-order integrable nonlinear Schrodinger equation by bifurcation method of differential dynamical system. The study of the plane traveling wave system derives a binary Hamiltonian function. Based on Hamiltonian function, we obtain the bifurcation of the plane traveling wave system. Unfortunately, the Hamiltonian function is a hyper-elliptic function, it is impossible to find all bounded traveling wave solutions. We have to consider the traveling wave solution under some special parameter conditions. At the same time, we use the modified simplest equation method to find more traveling wave solutions for the fourth-order integrable nonlinear Schrodinger equation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] BIFURCATIONS AND EXACT TRAVELING WAVE SOLUTIONS FOR THE GENERALIZED NONLINEAR SCHRODINGER EQUATION WITH WAVE OPERATOR
    Chen, Quting
    Shang, Yadong
    Di, Huafei
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (01): : 336 - 346
  • [22] Exact traveling wave solutions and bifurcations of the generalized derivative nonlinear Schrodinger equation
    Leta, Temesgen Desta
    Li, Jibin
    [J]. NONLINEAR DYNAMICS, 2016, 85 (02) : 1031 - 1037
  • [23] Continuous dependence of solutions to fourth-order nonlinear wave equation
    Gulec, Ipek
    Gur, Sevket
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 367 - 371
  • [24] The Fourth-Order Dispersive Nonlinear Schrodinger Equation: Orbital Stability of a Standing Wave
    Natali, Fabio
    Pastor, Ademir
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (03): : 1326 - 1347
  • [25] Optical solitary wave solutions for the fourth-order dispersive cubic-quintic nonlinear Schrodinger equation
    Dai, Chao-Qing
    Chen, Jun-Lang
    Zhang, Jie-Fang
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (15): : 2657 - 2668
  • [26] A fourth-order difference scheme for the fractional nonlinear Schrodinger equation with wave operator
    Pan, Kejia
    Zeng, Jiali
    He, Dongdong
    Zhang, Saiyan
    [J]. APPLICABLE ANALYSIS, 2022, 101 (08) : 2886 - 2902
  • [27] Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation
    Zhu, Shihui
    Yang, Han
    Zhang, Jian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6186 - 6201
  • [28] Soliton Solutions and Conservation Laws for an Inhomogeneous Fourth-Order Nonlinear Schrodinger Equation
    Wang, Pan
    Qi, Feng-Hua
    Yang, Jian-Rong
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (11) : 1856 - 1864
  • [29] Factorization technique for the fourth-order nonlinear Schrodinger equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2343 - 2377
  • [30] Traveling wave solutions of the nonlinear Schrodinger equation
    Akbari-Moghanjoughi, M.
    [J]. PHYSICS OF PLASMAS, 2017, 24 (10)