Unifying Ideas for Non-Parametric Linkage Analysis

被引:0
|
作者
Day-Williams, Aaron G. [1 ]
Blangero, John [3 ]
Dyer, Thomas D. [3 ]
Lange, Kenneth [1 ,2 ]
Sobel, Eric M. [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biomath, Los Angeles, CA 90095 USA
[3] Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA
关键词
Non-parametric linkage; NPL; QTL; Kong and Cox adjustment; Perfect data; ALLELE-SHARING STATISTICS; NULL HYPOTHESIS; DESCENT; IDENTITY; MODELS; SCORES; BIAS;
D O I
10.1159/000323752
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Objectives: Non-parametric linkage analysis (NPL) exploits marker allele sharing among affected relatives to map genes influencing complex traits. Computational barriers force approximate analysis on large pedigrees and the adoption of a questionable perfect data assumption (PDA) in assigning p values. To improve NPL significance testing on large pedigrees, we examine the adverse consequences of missing data and PDA. We also introduce a novel statistic, Q-NPL, appropriate for NPL analysis of quantitative traits. Methods: Using simulated and real data sets with qualitative traits, we compare NPL analysis results for four testing procedures and various degrees of missing data. The simulated data sets vary from all nuclear families, to all large pedigrees, to a mix of pedigrees of different sizes. We implemented the Kong and Cox linear adjustment of p values in the software packages Mendel and SimWalk. We perform similar analysis with Q-NPL on quantitative traits of various heritabilities. Results: The Kong and Cox extension for significance testing is robust to realistic missing data patterns, greatly improves p values in approximate analyses, and works equally well for qualitative and quantitative traits and small and large pedigrees. The Q-NPL statistic is robust to missing data and shows good power to detect linkage for quantitative traits with a wide spectrum of heritabilities. Conclusions: The Kong and Cox extension should be a standard tool for calculating NPL p values. It allows the combination of exact and estimated analyses into a single significance score. Q-NPL should be a standard statistic for NPL analysis of quantitative traits. The new statistics are implemented in Mendel and SimWalk. Copyright (C) 2011 S. Karger AG, Basel
引用
收藏
页码:267 / 280
页数:14
相关论文
共 50 条
  • [31] REVIEW OF NON-PARAMETRIC METHODS FOR TREND ANALYSIS
    BRICHACEK, V
    [J]. CESKOSLOVENSKA PSYCHOLOGIE, 1970, 14 (03): : 259 - 261
  • [32] Non-parametric Econometrics
    Leong, Chee Kian
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2012, 175 : 1072 - 1072
  • [33] NON-PARAMETRIC STRINGS
    GAMBINI, R
    TRIAS, A
    [J]. PHYSICS LETTERS B, 1988, 200 (03) : 280 - 284
  • [34] Non-Parametric Parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    [J]. ACM SIGPLAN NOTICES, 2009, 44 (8-9) : 135 - 148
  • [35] Linkage mapping of beta 2 EEG waves via non-parametric regression
    Ghosh, S
    Begleiter, H
    Porjesz, B
    Chorlian, DB
    Edenberg, HJ
    Foroud, T
    Goate, A
    Reich, T
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2003, 118B (01) : 66 - 71
  • [36] A non-parametric regression method for linkage mapping of Slow Beta EEG waves
    Ghosh, S
    Reich, T
    Porjesz, B
    Begleiter, H
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS, 2001, 105 (07): : 642 - 642
  • [37] Non-Parametric Parametricity
    Nei, Georg
    Dreyer, Derek
    Rossberg, Andreas
    [J]. ICFP'09: PROCEEDINGS OF THE 2009 ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING, 2009, : 135 - 148
  • [38] Non-parametric parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    [J]. JOURNAL OF FUNCTIONAL PROGRAMMING, 2011, 21 : 497 - 562
  • [39] Parametric and Non-parametric Encompassing Procedures
    Bontemps, Christophe
    Florens, Jean-Pierre
    Richard, Jean-Francois
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2008, 70 : 751 - 780
  • [40] Non-parametric production analysis in non-competitive environments
    Cherchye, L
    Kuosmanen, T
    Post, T
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2002, 80 (03) : 279 - 294