Unifying Ideas for Non-Parametric Linkage Analysis

被引:0
|
作者
Day-Williams, Aaron G. [1 ]
Blangero, John [3 ]
Dyer, Thomas D. [3 ]
Lange, Kenneth [1 ,2 ]
Sobel, Eric M. [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biomath, Los Angeles, CA 90095 USA
[3] Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA
关键词
Non-parametric linkage; NPL; QTL; Kong and Cox adjustment; Perfect data; ALLELE-SHARING STATISTICS; NULL HYPOTHESIS; DESCENT; IDENTITY; MODELS; SCORES; BIAS;
D O I
10.1159/000323752
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Objectives: Non-parametric linkage analysis (NPL) exploits marker allele sharing among affected relatives to map genes influencing complex traits. Computational barriers force approximate analysis on large pedigrees and the adoption of a questionable perfect data assumption (PDA) in assigning p values. To improve NPL significance testing on large pedigrees, we examine the adverse consequences of missing data and PDA. We also introduce a novel statistic, Q-NPL, appropriate for NPL analysis of quantitative traits. Methods: Using simulated and real data sets with qualitative traits, we compare NPL analysis results for four testing procedures and various degrees of missing data. The simulated data sets vary from all nuclear families, to all large pedigrees, to a mix of pedigrees of different sizes. We implemented the Kong and Cox linear adjustment of p values in the software packages Mendel and SimWalk. We perform similar analysis with Q-NPL on quantitative traits of various heritabilities. Results: The Kong and Cox extension for significance testing is robust to realistic missing data patterns, greatly improves p values in approximate analyses, and works equally well for qualitative and quantitative traits and small and large pedigrees. The Q-NPL statistic is robust to missing data and shows good power to detect linkage for quantitative traits with a wide spectrum of heritabilities. Conclusions: The Kong and Cox extension should be a standard tool for calculating NPL p values. It allows the combination of exact and estimated analyses into a single significance score. Q-NPL should be a standard statistic for NPL analysis of quantitative traits. The new statistics are implemented in Mendel and SimWalk. Copyright (C) 2011 S. Karger AG, Basel
引用
收藏
页码:267 / 280
页数:14
相关论文
共 50 条
  • [21] Non-parametric analysis of telemetry cardiovascular monitoring
    Anderson, NH
    Devlin, AM
    Graham, D
    Morton, JJ
    Hamilton, CA
    Reid, JL
    Dominiczak, AF
    [J]. HYPERTENSION, 1998, 32 (03) : 631 - 631
  • [22] Non-parametric Population Analysis of Cellular Phenotypes
    Singh, Shantanu
    Janoos, Firdaus
    Pecot, Thierry
    Caserta, Enrico
    Huang, Kun
    Rittscher, Jens
    Leone, Gustavo
    Machiraju, Raghu
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2011), PT II, 2011, 6892 : 343 - +
  • [23] Non-parametric Methods in the Analysis of Hydroclimatic Variables
    Hazarika, Jiten
    Goswami, Kuldeep
    [J]. THAILAND STATISTICIAN, 2021, 19 (02): : 420 - 436
  • [24] KELLY NON-PARAMETRIC FACTOR-ANALYSIS
    ARTHUR, AZ
    [J]. PSYCHOLOGICAL REPORTS, 1965, 16 (03) : 922 - 922
  • [25] A NON-PARAMETRIC ANALYSIS ON ANCHOR BANKS IN MALAYSIA
    Kadir, Hazlina Abdul
    Masinaei, Reza
    Rahmani, Nasim
    [J]. ECONOMICS AND FINANCE RESEARCH, 2011, 4 : 232 - 236
  • [26] A NON-PARAMETRIC APPROACH TO THE GRAPHICAL ANALYSIS OF TRENDS
    WALTERS, RH
    [J]. CANADIAN JOURNAL OF PSYCHOLOGY, 1959, 13 (02): : 84 - 85
  • [27] GENERALIZED NON-PARAMETRIC ANALYSIS OF VARIANCE PROGRAM
    ROBERGE, JJ
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1972, 25 (MAY): : 128 - &
  • [28] AN EFFICIENT NON-PARAMETRIC ANALYSIS OF RECOGNITION MEMORY
    POLLACK, I
    NORMAN, DA
    GALANTER, E
    [J]. PSYCHONOMIC SCIENCE, 1964, 1 (11): : 327 - 328
  • [29] NON-PARAMETRIC STATISTICAL ANALYSIS OF THE RAMACHANDRAN MAP
    Shapovalov, Maxim V.
    Dunbrack, Roland L., Jr.
    [J]. BIOMOLECULAR FORMS AND FUNCTIONS: A CELEBRATION OF 50 YEARS OF THE RAMACHANDRAN MAP, 2013, : 76 - 94
  • [30] Non-parametric kinetic analysis of autocatalytic reactions
    Ferrer, Nabi
    Serra, Millard
    Sempere, Julia
    Nomen, Rosa
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2017, 49 : 357 - 366