Unifying Ideas for Non-Parametric Linkage Analysis

被引:0
|
作者
Day-Williams, Aaron G. [1 ]
Blangero, John [3 ]
Dyer, Thomas D. [3 ]
Lange, Kenneth [1 ,2 ]
Sobel, Eric M. [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biomath, Los Angeles, CA 90095 USA
[3] Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA
关键词
Non-parametric linkage; NPL; QTL; Kong and Cox adjustment; Perfect data; ALLELE-SHARING STATISTICS; NULL HYPOTHESIS; DESCENT; IDENTITY; MODELS; SCORES; BIAS;
D O I
10.1159/000323752
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Objectives: Non-parametric linkage analysis (NPL) exploits marker allele sharing among affected relatives to map genes influencing complex traits. Computational barriers force approximate analysis on large pedigrees and the adoption of a questionable perfect data assumption (PDA) in assigning p values. To improve NPL significance testing on large pedigrees, we examine the adverse consequences of missing data and PDA. We also introduce a novel statistic, Q-NPL, appropriate for NPL analysis of quantitative traits. Methods: Using simulated and real data sets with qualitative traits, we compare NPL analysis results for four testing procedures and various degrees of missing data. The simulated data sets vary from all nuclear families, to all large pedigrees, to a mix of pedigrees of different sizes. We implemented the Kong and Cox linear adjustment of p values in the software packages Mendel and SimWalk. We perform similar analysis with Q-NPL on quantitative traits of various heritabilities. Results: The Kong and Cox extension for significance testing is robust to realistic missing data patterns, greatly improves p values in approximate analyses, and works equally well for qualitative and quantitative traits and small and large pedigrees. The Q-NPL statistic is robust to missing data and shows good power to detect linkage for quantitative traits with a wide spectrum of heritabilities. Conclusions: The Kong and Cox extension should be a standard tool for calculating NPL p values. It allows the combination of exact and estimated analyses into a single significance score. Q-NPL should be a standard statistic for NPL analysis of quantitative traits. The new statistics are implemented in Mendel and SimWalk. Copyright (C) 2011 S. Karger AG, Basel
引用
收藏
页码:267 / 280
页数:14
相关论文
共 50 条
  • [1] Testing for epistasis in non-parametric linkage analysis.
    Greenwood, TA
    Schork, NJ
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (05) : 615 - 615
  • [2] New ideas in non-parametric estimation
    Pistone, G
    [J]. DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 159 - 164
  • [3] Unifying Framework for Decomposition Models of Parametric and Non-parametric Image Registration
    Ibrahim, Mazlinda
    Chen, Ke
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [4] Parametric and non-parametric linkage analysis of several candidate regions for genes for human handedness
    Van Agtmael, T
    Forrest, SM
    Williamson, R
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2002, 10 (10) : 623 - 630
  • [5] Parametric and non-parametric linkage analysis of several candidate regions for genes for human handedness
    Tom Van Agtmael
    Susan M Forrest
    Robert Williamson
    [J]. European Journal of Human Genetics, 2002, 10 : 623 - 630
  • [6] Multipoint and single point non-parametric linkage analysis with imperfect data
    Sullivan, PF
    Neale, BM
    Neale, MC
    van den Oord, E
    Kendler, KS
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2003, 121B (01): : 89 - 94
  • [7] Sib-pair: a program for non-parametric linkage/association analysis.
    Duffy, DL
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (04) : A197 - A197
  • [8] Parametric and non-parametric unsupervised cluster analysis
    Roberts, SJ
    [J]. PATTERN RECOGNITION, 1997, 30 (02) : 261 - 272
  • [9] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    [J]. BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [10] Non-Parametric Estimation of Mutual Information through the Entropy of the Linkage
    Giraudo, Maria Teresa
    Sacerdote, Laura
    Sirovich, Roberta
    [J]. ENTROPY, 2013, 15 (12) : 5154 - 5177