Handling missing attribute values in preterm birth data sets

被引:0
|
作者
Grzymala-Busse, JW [1 ]
Goodwin, LK
Grzymala-Busse, WJ
Zheng, XQ
机构
[1] Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66045 USA
[2] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
[3] Duke Univ, Nursing Informat Program, Durham, NC 27710 USA
[4] Filterlogix, Lawrence, KS 66049 USA
[5] PC Sprint, Overland Pk, KS 66211 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of our research was to find the best approach to handle missing attribute values in data sets describing preterm birth provided by the Duke University. Five strategies were used for filling in missing attribute values, based on most common values and closest fit for symbolic attributes, averages for numerical attributes, and a special approach to induce only certain rules from specified information using the MLEM2 approach. The final conclusion is that the best strategy was to use the global most common method for symbolic attributes and the global average method for numerical attributes.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 50 条
  • [31] Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies
    Kieu Trinh Do
    Simone Wahl
    Johannes Raffler
    Sophie Molnos
    Michael Laimighofer
    Jerzy Adamski
    Karsten Suhre
    Konstantin Strauch
    Annette Peters
    Christian Gieger
    Claudia Langenberg
    Isobel D. Stewart
    Fabian J. Theis
    Harald Grallert
    Gabi Kastenmüller
    Jan Krumsiek
    Metabolomics, 2018, 14
  • [32] Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies
    Kieu Trinh Do
    Wahl, Simone
    Raffler, Johannes
    Molnos, Sophie
    Laimighofer, Michael
    Adamski, Jerzy
    Suhre, Karsten
    Strauch, Konstantin
    Peters, Annette
    Gieger, Christian
    Langenberg, Claudia
    Stewart, Isobel D.
    Theis, Fabian J.
    Grallert, Harald
    Kastenmueller, Gabi
    Krumsiek, Jan
    METABOLOMICS, 2018, 14 (10)
  • [33] Handling of Missing Data
    Budhiraja, Pooja
    Kaplan, Bruce
    Mustafa, Reem A.
    TRANSPLANTATION, 2020, 104 (01) : 24 - 26
  • [34] HANDLING OF MISSING DATA
    Torres, F.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2011, 109 : 17 - 17
  • [35] Handling missing data
    不详
    CURRENT PROBLEMS IN CANCER, 2005, 29 (06) : 317 - 325
  • [36] Handling of missing values in lexical acquisition
    Bel, Nuria
    LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2010, : 2728 - 2735
  • [37] Experiments on data with three interpretations of missing attribute values - A rough set approach
    Grzymala-Busse, Jerzy W.
    Santoso, Steven
    INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS, 2006, : 143 - +
  • [38] A comparison of traditional and rough set approaches to missing attribute values in data mining
    Grzymala-Busse, J. W.
    DATA MINING X: DATA MINING, PROTECTION, DETECTION AND OTHER SECURITY TECHNOLOGIES, 2009, 42 : 155 - 163
  • [39] MINING DATA WITH MISSING ATTRIBUTE VALUES: A COMPARISON OF PROBABILISTIC AND ROUGH SET APPROACHES
    Grzymala-Busse, J. W.
    INTELLIGENT DECISION MAKING SYSTEMS, VOL. 2, 2010, : 153 - +
  • [40] Single imputation method of missing values in environmental pollution data sets
    Plaia, A.
    Bondi, A. L.
    ATMOSPHERIC ENVIRONMENT, 2006, 40 (38) : 7316 - 7330