Handling missing attribute values in preterm birth data sets

被引:0
|
作者
Grzymala-Busse, JW [1 ]
Goodwin, LK
Grzymala-Busse, WJ
Zheng, XQ
机构
[1] Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66045 USA
[2] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
[3] Duke Univ, Nursing Informat Program, Durham, NC 27710 USA
[4] Filterlogix, Lawrence, KS 66049 USA
[5] PC Sprint, Overland Pk, KS 66211 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of our research was to find the best approach to handle missing attribute values in data sets describing preterm birth provided by the Duke University. Five strategies were used for filling in missing attribute values, based on most common values and closest fit for symbolic attributes, averages for numerical attributes, and a special approach to induce only certain rules from specified information using the MLEM2 approach. The final conclusion is that the best strategy was to use the global most common method for symbolic attributes and the global average method for numerical attributes.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 50 条
  • [21] Handling missing values in kernel methods with application to microbiology data
    Belanche, Lluis A.
    Kobayashi, Vladimer
    Aluja, Tomas
    NEUROCOMPUTING, 2014, 141 : 110 - 116
  • [22] Data with missing attribute values: Generalization of indiscernibility relation and rule induction
    Grzymala-Busse, JW
    TRANSACTIONS ON ROUGH SETS I, 2004, 3100 : 78 - 95
  • [23] Scalable Data Quality for Big Data: The Pythia Framework for Handling Missing Values
    Cahsai, Atoshum
    Anagnostopoulos, Christos
    Triantafillou, Peter
    BIG DATA, 2015, 3 (03) : 159 - 172
  • [24] Methods for imputation of missing values in air quality data sets
    Junninen, H
    Niska, H
    Tuppurainen, K
    Ruuskanen, J
    Kolehmainen, M
    ATMOSPHERIC ENVIRONMENT, 2004, 38 (18) : 2895 - 2907
  • [25] Cyclical hybrid imputation technique for missing values in data sets
    Kotan, Kurban
    Kirisoglu, Serdar
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] Rough Sets Approximations in Data Tables Containing Missing Values
    Nakata, Michinori
    Sakai, Hiroshi
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 673 - +
  • [27] Applying rough sets to data tables containing missing values
    Nakata, Michinori
    Sakai, Hiroshi
    ROUGH SETS AND INTELLIGENT SYSTEMS PARADIGMS, PROCEEDINGS, 2007, 4585 : 181 - +
  • [28] Incorporating an EM-approach for handling missing attribute-values in decision tree induction
    Karmaker, A
    Kwek, S
    HIS 2005: 5TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, : 309 - 314
  • [29] A Primer of Data Cleaning in Quantitative Research: Handling Missing Values and Outliers
    Sharifnia, Amir Masoud
    Kpormegbey, Daniel Edem
    Thapa, Deependra Kaji
    Cleary, Michelle
    JOURNAL OF ADVANCED NURSING, 2025,
  • [30] A Review of Missing Values Handling Methods on Time-Series Data
    Pratama, Irfan
    Permanasari, Adhistya Erna
    Ardiyanto, Igi
    Indrayani, Rini
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY SYSTEMS AND INNOVATION (ICITSI), 2016,