Handling missing attribute values in preterm birth data sets

被引:0
|
作者
Grzymala-Busse, JW [1 ]
Goodwin, LK
Grzymala-Busse, WJ
Zheng, XQ
机构
[1] Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66045 USA
[2] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
[3] Duke Univ, Nursing Informat Program, Durham, NC 27710 USA
[4] Filterlogix, Lawrence, KS 66049 USA
[5] PC Sprint, Overland Pk, KS 66211 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of our research was to find the best approach to handle missing attribute values in data sets describing preterm birth provided by the Duke University. Five strategies were used for filling in missing attribute values, based on most common values and closest fit for symbolic attributes, averages for numerical attributes, and a special approach to induce only certain rules from specified information using the MLEM2 approach. The final conclusion is that the best strategy was to use the global most common method for symbolic attributes and the global average method for numerical attributes.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 50 条
  • [1] A closest fit approach to missing attribute values in preterm birth data
    Grzymala-Busse, JW
    Grzymala-Busse, WJ
    Goodwin, LK
    NEW DIRECTIONS IN ROUGH SETS, DATA MINING, AND GRANULAR-SOFT COMPUTING, 1999, 1711 : 405 - 413
  • [2] A comparison of three closest fit approaches to missing attribute values in preterm birth data
    Grzymala-Busse, JW
    Grzymala-Busse, WJ
    Goodwin, LK
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2002, 17 (02) : 125 - 134
  • [3] Coping with missing attribute values based on closest fit in preterm birth data: A rough set approach
    Grzymala-Busse, JW
    Grzymala-Busse, WJ
    Goodwin, LK
    COMPUTATIONAL INTELLIGENCE, 2001, 17 (03) : 425 - 434
  • [4] Handling missing values in trait data
    Johnson, Thomas F.
    Isaac, Nick J. B.
    Paviolo, Agustin
    Gonzalez-Suarez, Manuela
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2021, 30 (01): : 51 - 62
  • [5] Rough sets handling missing values probabilistically interpreted
    Nakata, M
    Sakai, H
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 1, PROCEEDINGS, 2005, 3641 : 325 - 334
  • [6] Assigning missing attribute values based on rough sets theory
    Li, Jiye
    Cercone, Nick
    2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, : 607 - +
  • [7] Missing values in monotone data sets
    Popova, Viara
    ISDA 2006: Sixth International Conference on Intelligent Systems Design and Applications, Vol 1, 2006, : 627 - 632
  • [8] Inducing Better Rule Sets by Adding Missing Attribute Values
    Grzymala-Busse, Jerzy W.
    Grzymala-Busse, Witold J.
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2008, 5306 : 160 - +
  • [9] Rough set strategies to data with missing attribute values
    Grzymala-Busse, JW
    FOUNDATIONS AND NOVEL APPROACHES IN DATA MINING, 2006, 9 : 197 - 212
  • [10] A rough set approach to data with missing attribute values
    Grzymala-Busse, Jerzy W.
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 58 - 67