Strong qualitative independence

被引:4
|
作者
Katona, GOH [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
关键词
search; qualitatively independent sets; Hadamard matrix; code;
D O I
10.1016/S0166-218X(03)00190-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subsets A, B of the n-element X are said to be s-strongly separating if the two sets divide X into four sets of size at least s. The maximum number h(n,s) of pairwise s-strongly separating subsets was asymptotically determined by Frankl (Ars Combin. 1 (1976) 53) for fixed s and large n. A new proof is given. Also, estimates for h(n, en) are found where c is a small constant. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 50 条
  • [41] THE STRONG INDEPENDENCE ASSUMPTION - GASOLINE BLENDS AND PROBABILITY MIXTURES
    Manne, Alan S.
    ECONOMETRICA, 1952, 20 (04) : 665 - 669
  • [43] A TEST OF THE FLAVOR INDEPENDENCE OF THE STRONG INTERACTION FOR 5 FLAVORS
    AKERS, R
    ALEXANDER, G
    ALLISON, J
    ANDERSON, KJ
    ARCELLI, S
    ASTBURY, A
    AXEN, D
    AZUELOS, G
    BAINES, JTM
    BALL, AH
    BANKS, J
    BARLOW, RJ
    BARNETT, S
    BARTOLDUS, R
    BATLEY, JR
    BEAUDOIN, G
    BECK, A
    BECK, GA
    BECKER, J
    BEESTON, C
    BEHNKE, T
    BELL, KW
    BELLA, G
    BENTKOWSKI, P
    BERLICH, P
    BETHKE, S
    BIEBEL, O
    BLOODWORTH, IJ
    BOCK, P
    BODEN, B
    BOSCH, HM
    BOUTEMEUR, M
    BREUKER, H
    BRIGHTTHOMAS, P
    BROWN, RM
    BUIJS, A
    BURCKHART, HJ
    BURGARD, C
    CAPILUPPI, P
    CARNEGIE, RK
    CARTER, AA
    CARTER, JR
    CHANG, CY
    CHARLTON, DG
    CHU, SL
    CLARKE, PEL
    CLAYTON, JC
    COHEN, I
    CONBOY, JE
    COOPER, M
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 60 (03): : 397 - 420
  • [44] A TEST OF THE FLAVOR INDEPENDENCE OF THE STRONG INTERACTION FOR 5 FLAVORS
    STROHMER, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (10): : 2055 - 2061
  • [45] The substantial independence number for the strong product of two graphs
    Bai, V. Rani Ratha
    Chellathurai, S. Robinson
    Chelvam, T. Tamizh
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2016, 19 (02): : 293 - 300
  • [46] A note on the independence number of strong products of odd cycles
    Korze, Danilo
    Vesel, Aleksander
    ARS COMBINATORIA, 2012, 106 : 473 - 481
  • [47] On the independence number of the strong product of cycle-powers
    Badalyan, Sevak H.
    Markosyan, Stepan E.
    DISCRETE MATHEMATICS, 2013, 313 (01) : 105 - 110
  • [48] The substantial independence number for the strong product of two graphs
    Rani Ratha Bai, V.
    Robinson Chellathurai, S.
    Tamizh Chelvam, T.
    Journal of Discrete Mathematical Sciences and Cryptography, 2016, 19 (02) : 293 - 300
  • [49] Comment on "Strong Quantum Darwinism and Strong Independence Are Equivalent to Spectrum Broadcast Structure" Reply
    Le, Thao P.
    Olaya-Castro, Alexandra
    PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [50] Refinement of the Low Vision Independence Measure: A Qualitative Study
    Smith, Theresa
    PHYSICAL & OCCUPATIONAL THERAPY IN GERIATRICS, 2013, 31 (03) : 182 - 196