Strong qualitative independence

被引:4
|
作者
Katona, GOH [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
关键词
search; qualitatively independent sets; Hadamard matrix; code;
D O I
10.1016/S0166-218X(03)00190-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subsets A, B of the n-element X are said to be s-strongly separating if the two sets divide X into four sets of size at least s. The maximum number h(n,s) of pairwise s-strongly separating subsets was asymptotically determined by Frankl (Ars Combin. 1 (1976) 53) for fixed s and large n. A new proof is given. Also, estimates for h(n, en) are found where c is a small constant. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 50 条
  • [11] Strong independence and the dimension of a Tverberg set
    Choudhury, Snigdha Bharati
    Deo, Satya
    EXPOSITIONES MATHEMATICAE, 2021, 39 (01) : 62 - 77
  • [12] Asymptotic Independence and Strong Approximation; A Survey
    Antónia Földes
    Periodica Mathematica Hungarica, 2000, 41 (1-2) : 121 - 147
  • [13] Strong Conditional Independence for Credal Sets
    Serafín Moral
    Andrés Cano
    Annals of Mathematics and Artificial Intelligence, 2002, 35 : 295 - 321
  • [14] Test of the flavor independence of strong interactions
    Abe, K
    Abt, I
    Ahn, CJ
    Akagi, T
    Allen, NJ
    Ash, WW
    Aston, D
    Bacchetta, N
    Baird, KG
    Baltay, C
    Band, HR
    Barakat, MB
    Baranko, G
    Bardon, O
    Barklow, T
    Bazarko, AO
    BenDavid, R
    Benvenuti, AC
    Bienz, T
    Bilei, GM
    Bisello, D
    Blaylock, G
    Bogart, JR
    Bolton, T
    Bower, GR
    Brau, JE
    Breidenbach, M
    Bugg, WM
    Burke, D
    Burnett, TH
    Burrows, PN
    Busza, W
    Calcaterra, A
    Caldwell, DO
    Calloway, D
    Camanzi, B
    Carpinelli, M
    Cassell, R
    Castaldi, R
    Castro, A
    CavalliSforza, M
    Church, E
    Cohn, HO
    Coller, JA
    Cook, V
    Cotton, R
    Cowan, RF
    Coyne, DG
    DOliveira, A
    Damerell, CJS
    PHYSICAL REVIEW D, 1996, 53 (05) : R2271 - R2275
  • [16] Test of flavor independence in strong interaction
    Liu, XM
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2004, 28 (10): : 1026 - 1032
  • [17] Test of flavor independence in strong interaction
    1600, Science Press, Beijing, China (28):
  • [18] STRONG LINEAR INDEPENDENCE IN BOTTLENECK ALGEBRA
    BUTKOVIC, P
    CECHLAROVA, K
    SZABO, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 94 : 133 - 155
  • [19] Strong conditional independence for credal sets
    Moral, S
    Cano, A
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2002, 35 (1-4) : 295 - 321
  • [20] QUALITATIVE INDEPENDENCE IN PROBABILITY-THEORY
    LUCE, RD
    NARENS, L
    THEORY AND DECISION, 1978, 9 (03) : 225 - 239