The rise of obfuscated Android malware and impacts on detection methods

被引:14
|
作者
Elsersy, Wael F. [1 ]
Feizollah, Ali [1 ]
Anuar, Nor Badrul [1 ]
机构
[1] Univ Malaya, Dept Comp Syst & Technol, Fac Comp Sci & Informat Technol, Kuala Lumpur, Wilayah Perseku, Malaysia
关键词
Android malware; Android security; Evasion techniques; Machine learning; Obfuscation techniques; DEEP LEARNING-METHOD; HYBRID APPROACH; SYSTEM; FEATURES; CODE; SIGNATURE; FRAMEWORK; ANALYZER; ATTACKS; THREAT;
D O I
10.7717/peerj-cs.907
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The various application markets are facing an exponential growth of Android malware. Every day, thousands of new Android malware applications emerge. Android malware hackers adopt reverse engineering and repackage benign applications with their malicious code. Therefore, Android applications developers tend to use state-of-the-art obfuscation techniques to mitigate the risk of application plagiarism. The malware authors adopt the obfuscation and transformation techniques to defeat the anti-malware detections, which this paper refers to as evasions. Malware authors use obfuscation techniques to generate new malware variants from the same malicious code. The concern of encountering difficulties in malware reverse engineering motivates researchers to secure the source code of benign Android applications using evasion techniques. This study reviews the state-of-the-art evasion tools and techniques. The study criticizes the existing research gap of detection in the latest Android malware detection frameworks and challenges the classification performance against various evasion techniques. The study concludes the research gaps in evaluating the current Android malware detection framework robustness against state-of-the-art evasion techniques. The study concludes the recent Android malware detection-related issues and lessons learned which require researchers' attention in the future.
引用
收藏
页数:61
相关论文
共 50 条
  • [41] A Hybrid Detection Method for Android Malware
    Fang, Qi
    Yang, Xiaohui
    Ji, Ce
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2127 - 2132
  • [42] MADLIRA: A Tool for Android Malware Detection
    Khanh Huu The Dam
    Touili, Tayssir
    ICISSP: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2021, : 670 - 675
  • [43] Deep Android Malware Detection and Classification
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1677 - 1683
  • [44] Feature importance in Android malware detection
    Kouliaridis, Vasileios
    Kambourakis, Georgios
    Peng, Tao
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1450 - 1455
  • [45] Android malware detection: state of the art
    Muttoo S.K.
    Badhani S.
    International Journal of Information Technology, 2017, 9 (1) : 111 - 117
  • [46] An Android malware static detection model
    Yang H.-Y.
    Xu J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2018, 48 (02): : 564 - 570
  • [47] Behavioral Malware Detection Approaches for Android
    Amin, Mohammad Ram
    Zaman, Mehedee
    Hossain, Md. Shohrab
    Atiquzzamant, Mohammed
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [48] Detection and Visualization of Android Malware Behavior
    Somarriba, Oscar
    Zurutuza, Urko
    Uribeetxeberria, Roberto
    Delosieres, Laurent
    Nadjm-Tehrani, Simin
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2016, 2016
  • [49] Android Malware Detection Using BERT
    Souani, Badr
    Khanfir, Ahmed
    Bartel, Alexandre
    Allix, Kevin
    Le Traon, Yves
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY WORKSHOPS, ACNS 2022, 2022, 13285 : 575 - 591
  • [50] A detection model of malware behaviors on android
    Dong, Hang, 1600, Beijing University of Posts and Telecommunications (37):