The rise of obfuscated Android malware and impacts on detection methods

被引:14
|
作者
Elsersy, Wael F. [1 ]
Feizollah, Ali [1 ]
Anuar, Nor Badrul [1 ]
机构
[1] Univ Malaya, Dept Comp Syst & Technol, Fac Comp Sci & Informat Technol, Kuala Lumpur, Wilayah Perseku, Malaysia
关键词
Android malware; Android security; Evasion techniques; Machine learning; Obfuscation techniques; DEEP LEARNING-METHOD; HYBRID APPROACH; SYSTEM; FEATURES; CODE; SIGNATURE; FRAMEWORK; ANALYZER; ATTACKS; THREAT;
D O I
10.7717/peerj-cs.907
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The various application markets are facing an exponential growth of Android malware. Every day, thousands of new Android malware applications emerge. Android malware hackers adopt reverse engineering and repackage benign applications with their malicious code. Therefore, Android applications developers tend to use state-of-the-art obfuscation techniques to mitigate the risk of application plagiarism. The malware authors adopt the obfuscation and transformation techniques to defeat the anti-malware detections, which this paper refers to as evasions. Malware authors use obfuscation techniques to generate new malware variants from the same malicious code. The concern of encountering difficulties in malware reverse engineering motivates researchers to secure the source code of benign Android applications using evasion techniques. This study reviews the state-of-the-art evasion tools and techniques. The study criticizes the existing research gap of detection in the latest Android malware detection frameworks and challenges the classification performance against various evasion techniques. The study concludes the research gaps in evaluating the current Android malware detection framework robustness against state-of-the-art evasion techniques. The study concludes the recent Android malware detection-related issues and lessons learned which require researchers' attention in the future.
引用
收藏
页数:61
相关论文
共 50 条
  • [21] Enhancing Obfuscated Malware Detection with Machine Learning Techniques
    Dang, Quang-Vinh
    FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 731 - 738
  • [22] Deep Android Malware Detection
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Kang, BooJoong
    Yerima, Suleiman
    Miller, Paul
    Sezer, Sakir
    Safaei, Yeganeh
    Trickel, Erik
    Zhao, Ziming
    Doup, Adam
    Ahn, Gail Joon
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 301 - 308
  • [23] Detection of Repackaged Android Malware
    Shahriar, Hossain
    Clincy, Victor
    2014 9TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2014, : 349 - 354
  • [24] Smart malware detection on Android
    Gheorghe, Laura
    Marin, Bogdan
    Gibson, Gary
    Mogosanu, Lucian
    Deaconescu, Razvan
    Voiculescu, Valentin-Gabriel
    Carabas, Mihai
    SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (18) : 4254 - 4272
  • [25] TRENDS IN ANDROID MALWARE DETECTION
    Shaerpour, Kaveh
    Dehghantanha, Ali
    Mahmod, Ramlan
    JOURNAL OF DIGITAL FORENSICS SECURITY AND LAW, 2013, 8 (03) : 21 - 40
  • [26] Android malware detection model
    Yang H.
    Na Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 45 - 51
  • [27] Android Fragmentation in Malware Detection
    Long Nguyen-Vu
    Ahn, Jinung
    Jung, Souhwan
    COMPUTERS & SECURITY, 2019, 87
  • [28] Android Malware Detection Methods Based on Convolutional Neural Network: A Survey
    Shu, Longhui
    Dong, Shi
    Su, Huadong
    Huang, Junjie
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (05): : 1330 - 1350
  • [29] Detection of Obfuscated Malware by Engineering Memory Functions Applying ELM
    Moraga, Leonardo Igor
    Malco, Juan Pablo Rivelli
    Zabala-Blanco, David
    Ahumada-Garcia, Roberto
    Azurdia-Meza, Cesar A.
    Firoozabadi, Ali Dehghan
    2023 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI, 2023,
  • [30] A Discrete Event System Based Approach for Obfuscated Malware Detection
    Patanaik, Chinmaya K.
    Barbhuiya, Ferdous A.
    Biswas, Santosh
    Nandi, Sukumar
    ADVANCES IN COMMUNICATION AND COMPUTING, 2015, 347 : 3 - 16