Using CRISPR-Cas systems as antimicrobials

被引:75
|
作者
Bikard, David [1 ]
Barrangou, Rodolphe [2 ]
机构
[1] Inst Pasteur, Microbiol Dept, Synthet Biol Grp, F-75015 Paris, France
[2] North Carolina State Univ, Dept Food Proc & Nutr Sci, Raleigh, NC 27695 USA
基金
欧洲研究理事会;
关键词
GENETICALLY-ENGINEERED PHAGE; RNA; DNA; BACTERIOPHAGE; IMMUNITY; GENE; INTERFERENCE; ACQUISITION; ENDONUCLEASE; DEGRADATION;
D O I
10.1016/j.mib.2017.08.005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 50 条
  • [41] A use/disuse paradigm for CRISPR-Cas systems
    Veigl, Sophie Juliane
    BIOLOGY & PHILOSOPHY, 2019, 34 (01)
  • [42] RNA-targeting CRISPR-Cas systems
    van Beljouw, Sam P. B.
    Sanders, Jasper
    Rodriguez-Molina, Alicia
    Brouns, Stan J. J.
    NATURE REVIEWS MICROBIOLOGY, 2023, 21 (01) : 21 - 34
  • [43] An updated evolutionary classification of CRISPR-Cas systems
    Makarova, Kira S.
    Wolf, Yuri I.
    Alkhnbashi, Omer S.
    Costa, Fabrizio
    Shah, Shiraz A.
    Saunders, Sita J.
    Barrangou, Rodolphe
    Brouns, Stan J. J.
    Charpentier, Emmanuelle
    Haft, Daniel H.
    Horvath, Philippe
    Moineau, Sylvain
    Mojica, Francisco J. M.
    Terns, Rebecca M.
    Terns, Michael P.
    White, Malcolm F.
    Yakunin, Alexander F.
    Garrett, Roger A.
    van der Oost, John
    Backofen, Rolf
    Koonin, Eugene V.
    NATURE REVIEWS MICROBIOLOGY, 2015, 13 (11) : 722 - 736
  • [44] Editorial: CRISPR-Cas Systems in Bacteria and Archaea
    Kamruzzaman, Muhammad
    Yan, Aixin
    Castro-Escarpulli, Graciela
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [45] The Reverse Transcriptases Associated with CRISPR-Cas Systems
    Nicolás Toro
    Francisco Martínez-Abarca
    Alejandro González-Delgado
    Scientific Reports, 7
  • [46] Diversity, classification and evolution of CRISPR-Cas systems
    Koonin, Eugene V.
    Makarova, Kira S.
    Zhang, Feng
    CURRENT OPINION IN MICROBIOLOGY, 2017, 37 : 67 - 78
  • [47] Predicting and visualizing features of CRISPR-Cas systems
    Nethery, Matthew A.
    Barrangou, Rodolphe
    CRISPR-CAS ENZYMES, 2019, 616 : 1 - 25
  • [48] CRISPR-Cas systems: Challenges and future prospects
    Gohil, Nisarg
    Bhattacharjee, Gargi
    Lam, Navya Lavina
    Perli, Samuel D.
    Singh, Vijai
    REPROGRAMMING THE GENOME: APPLICATIONS OF CRISPR-CAS IN NON-MAMMALIAN SYSTEMS, PT B, 2021, 180 : 141 - 151
  • [49] Delivery of CRISPR-Cas systems using phage-based vectors
    Fage, Clement
    Lemire, Nicolas
    Moineau, Sylvain
    CURRENT OPINION IN BIOTECHNOLOGY, 2021, 68 : 174 - 180
  • [50] CRISPR-Cas bioinformatics
    Alkhnbashi, Omer S.
    Meier, Tobias
    Mitrofanov, Alexander
    Backofen, Rolf
    Voss, Bjoern
    METHODS, 2020, 172 : 3 - 11