Using CRISPR-Cas systems as antimicrobials

被引:75
|
作者
Bikard, David [1 ]
Barrangou, Rodolphe [2 ]
机构
[1] Inst Pasteur, Microbiol Dept, Synthet Biol Grp, F-75015 Paris, France
[2] North Carolina State Univ, Dept Food Proc & Nutr Sci, Raleigh, NC 27695 USA
基金
欧洲研究理事会;
关键词
GENETICALLY-ENGINEERED PHAGE; RNA; DNA; BACTERIOPHAGE; IMMUNITY; GENE; INTERFERENCE; ACQUISITION; ENDONUCLEASE; DEGRADATION;
D O I
10.1016/j.mib.2017.08.005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 50 条
  • [21] CRISPR-Cas systems in multicellular cyanobacteria
    Hou, Shengwei
    Brenes-Alvarez, Manuel
    Reimann, Viktoria
    Alkhnbashi, Omer S.
    Backofen, Rolf
    Muro-Pastor, Alicia M.
    Hess, Wolfgang R.
    RNA BIOLOGY, 2019, 16 (04) : 518 - 529
  • [22] Evolution and classification of the CRISPR-Cas systems
    Makarova, Kira S.
    Haft, Daniel H.
    Barrangou, Rodolphe
    Brouns, Stan J. J.
    Charpentier, Emmanuelle
    Horvath, Philippe
    Moineau, Sylvain
    Mojica, Francisco J. M.
    Wolf, Yuri I.
    Yakunin, Alexander F.
    van der Oost, John
    Koonin, Eugene V.
    NATURE REVIEWS MICROBIOLOGY, 2011, 9 (06) : 467 - 477
  • [23] An introduction and use of the CRISPR-Cas systems
    Singh, Vijai
    REPROGRAMMING THE GENOME: APPLICATIONS OF CRISPR-CAS IN NON-MAMMALIAN SYSTEMS, PT A, 2021, 179 : 1 - 10
  • [24] Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
    Bikard, David
    Euler, Chad W.
    Jiang, Wenyan
    Nussenzweig, Philip M.
    Goldberg, Gregory W.
    Duportet, Xavier
    Fischetti, Vincent A.
    Marraffini, Luciano A.
    NATURE BIOTECHNOLOGY, 2014, 32 (11) : 1146 - 1150
  • [25] Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
    David Bikard
    Chad W Euler
    Wenyan Jiang
    Philip M Nussenzweig
    Gregory W Goldberg
    Xavier Duportet
    Vincent A Fischetti
    Luciano A Marraffini
    Nature Biotechnology, 2014, 32 : 1146 - 1150
  • [26] Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    DiCarlo, James E.
    Norville, Julie E.
    Mali, Prashant
    Rios, Xavier
    Aach, John
    Church, George M.
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07) : 4336 - 4343
  • [27] Activity and repurposing of native CRISPR-CAS systems
    Barrangou, R.
    PHYTOPATHOLOGY, 2016, 106 (12) : 176 - 176
  • [28] The Reverse Transcriptases Associated with CRISPR-Cas Systems
    Toro, Nicolas
    Martinez-Abarca, Francisco
    Gonzalez-Delgado, Alejandro
    SCIENTIFIC REPORTS, 2017, 7
  • [29] Regulation of CRISPR-Cas adaptive immune systems
    Patterson, Adrian G.
    Yevstigneyeva, Mariya S.
    Fineran, Peter C.
    CURRENT OPINION IN MICROBIOLOGY, 2017, 37 : 1 - 7
  • [30] CRISPR-Cas systems: beyond adaptive immunity
    Westra, Edze R.
    Buckling, Angus
    Fineran, Peter C.
    NATURE REVIEWS MICROBIOLOGY, 2014, 12 (05) : 317 - 326