Using CRISPR-Cas systems as antimicrobials

被引:75
|
作者
Bikard, David [1 ]
Barrangou, Rodolphe [2 ]
机构
[1] Inst Pasteur, Microbiol Dept, Synthet Biol Grp, F-75015 Paris, France
[2] North Carolina State Univ, Dept Food Proc & Nutr Sci, Raleigh, NC 27695 USA
基金
欧洲研究理事会;
关键词
GENETICALLY-ENGINEERED PHAGE; RNA; DNA; BACTERIOPHAGE; IMMUNITY; GENE; INTERFERENCE; ACQUISITION; ENDONUCLEASE; DEGRADATION;
D O I
10.1016/j.mib.2017.08.005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 50 条
  • [1] Bacterial resistance to CRISPR-Cas antimicrobials
    Uribe, Ruben, V
    Rathmer, Christin
    Jahn, Leonie Johanna
    Ellabaan, Mostafa Mostafa Hashim
    Li, Simone S.
    Sommer, Morten Otto Alexander
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Bacterial resistance to CRISPR-Cas antimicrobials
    Ruben V. Uribe
    Christin Rathmer
    Leonie Johanna Jahn
    Mostafa Mostafa Hashim Ellabaan
    Simone S. Li
    Morten Otto Alexander Sommer
    Scientific Reports, 11
  • [3] CRISPR-Cas antimicrobials: Challenges and future prospects
    Pursey, Elizabeth
    Sunderhauf, David
    Gaze, William H.
    Westra, Edze R.
    van Houte, Stineke
    PLOS PATHOGENS, 2018, 14 (06)
  • [4] CRISPR-Cas Systems in Streptococci
    Gong, Tao
    Lu, Miao
    Zhou, Xuedong
    Zhang, Anqi
    Tang, Boyu
    Chen, Jiamin
    Jing, Meiling
    Li, Yuqing
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2019, 32 : 1 - 37
  • [5] CRISPR-Cas systems in enterococci
    Cabral, Amanda Seabra
    Lacerda, Fernanda de Freitas
    Leite, Vitor Luis Macena
    de Miranda, Filipe Martire
    da Silva, Amanda Beiral
    dos Santos, Barbara Araujo
    Lima, Jailton Lobo da Costa
    Teixeira, Lucia Martins
    Neves, Felipe Piedade Goncalves
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2024, : 3945 - 3957
  • [6] CRISPR-Cas Systems in Prokaryotes
    Burmistrz, Michal
    Pyrc, Krzysztof
    POLISH JOURNAL OF MICROBIOLOGY, 2015, 64 (03) : 193 - 202
  • [7] Adaptation in CRISPR-Cas Systems
    Sternberg, Samuel H.
    Richter, Hagen
    Charpentier, Emmanuelle
    Qimron, Udi
    MOLECULAR CELL, 2016, 61 (06) : 797 - 808
  • [8] Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria
    Pattharaprachayakul, Napisa
    Lee, Mieun
    Incharoensakdi, Aran
    Woo, Han Min
    ENZYME AND MICROBIAL TECHNOLOGY, 2020, 140
  • [9] Investigating the Genomic Background of CRISPR-Cas Genomes for CRISPR-Based Antimicrobials
    Shim, Hyunjin
    EVOLUTIONARY BIOINFORMATICS, 2022, 18
  • [10] Phage Genetic Engineering Using CRISPR-Cas Systems
    Hatoum-Aslan, Asma
    VIRUSES-BASEL, 2018, 10 (06):