Rainbow Ramsey Problems for the Boolean Lattice

被引:4
|
作者
Chang, Fei-Huang [1 ]
Gerbner, Daniel [2 ]
Li, Wei-Tian [3 ]
Methuku, Abhishek [4 ]
Nagy, Daniel T. [2 ]
Patkos, Balazs [2 ,5 ]
Vizer, Mate [2 ,6 ]
机构
[1] Natl Taiwan Normal Univ New Taipei City, Div Preparatory Programs Overseas Chinese Student, Taipei, Taiwan
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[3] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
[4] Univ Birmingham, Birmingham, W Midlands, England
[5] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[6] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, Hungary
基金
英国工程与自然科学研究理事会;
关键词
Extremal set systems; Forbidden subposet problem; Ramsey theory; FREE FAMILIES;
D O I
10.1007/s11083-021-09581-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the following rainbow Ramsey problem: For posets P, Q what is the smallest number n such that any coloring of the elements of the Boolean lattice B-n either admits a monochromatic copy of P or a rainbow copy of Q. We consider both weak and strong (non-induced and induced) versions of this problem.
引用
收藏
页码:453 / 463
页数:11
相关论文
共 50 条
  • [1] Rainbow Ramsey Problems for the Boolean Lattice
    Fei-Huang Chang
    Dániel Gerbner
    Wei-Tian Li
    Abhishek Methuku
    Dániel T. Nagy
    Balázs Patkós
    Máté Vizer
    Order, 2022, 39 : 453 - 463
  • [2] The Boolean Rainbow Ramsey Number of Antichains, Boolean Posets and Chains
    Chen, Hong-Bin
    Cheng, Yen-Jen
    Li, Wei-Tian
    Liu, Chia-An
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 12
  • [3] Ramsey properties for V-shaped posets in the Boolean lattice
    Chen, Hong -Bin
    Chen, Wei -Han
    Cheng, Yen-Jen
    Li, Wei-Tian
    Liu, Chia-An
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [4] On colorings of the Boolean lattice avoiding a rainbow copy of a poset
    Patkos, Balazs
    DISCRETE APPLIED MATHEMATICS, 2020, 276 : 108 - 114
  • [5] Poset Ramsey numbers: large Boolean lattice versus a fixed poset
    Axenovich, Maria
    Winter, Christian
    COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (04): : 638 - 653
  • [6] Ramsey numbers of Boolean lattices
    Grosz, Daniel
    Methuku, Abhishek
    Tompkins, Casey
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (02) : 914 - 932
  • [7] THE STRENGTH OF THE RAINBOW RAMSEY THEOREM
    Csima, Barbara F.
    Mileti, Joseph R.
    JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (04) : 1310 - 1324
  • [8] Rainbow Ramsey simple structures
    Dobrinen, Natasha
    Laflamme, ClauDe
    Sauer, Norbert
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2848 - 2855
  • [9] Bipartite rainbow Ramsey numbers
    Eroh, L
    Oellermann, OR
    DISCRETE MATHEMATICS, 2004, 277 (1-3) : 57 - 72
  • [10] Poset Ramsey Numbers for Boolean Lattices
    Linyuan Lu
    Joshua C. Thompson
    Order, 2022, 39 : 171 - 185