The Boolean Rainbow Ramsey Number of Antichains, Boolean Posets and Chains

被引:6
|
作者
Chen, Hong-Bin [1 ]
Cheng, Yen-Jen [2 ]
Li, Wei-Tian [1 ]
Liu, Chia-An [3 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 116325, Taiwan
[3] Soochow Univ, Dept Math, Taipei 11102, Taiwan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2020年 / 27卷 / 04期
关键词
FAMILIES;
D O I
10.37236/9034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the paper, Boolean lattices: Ramsey properties and embeddings Order, 34 (2) (2017), of Axenovich and Walzer, we study the Ramsey-type problems on the Boolean lattices. Given posets P and Q, we look for the smallest Boolean lattice B-N such that any coloring of elements of B-N must contain a monochromatic P or a rainbow Q as an induced subposet. This number N is called the Boolean rainbow Ramsey number of P and Q in the paper. Particularly, we determine the exact values of the Boolean rainbow Ramsey number for P and Q being the antichains, the Boolean posets, or the chains. From these results, we also derive some general upper and lower bounds of the Boolean rainbow Ramsey number for general P and Q in terms of the poset parameters.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Chains and antichains in Boolean algebras
    Losada, M
    Todorcevic, S
    FUNDAMENTA MATHEMATICAE, 2000, 163 (01) : 55 - 76
  • [2] Rainbow Ramsey Problems for the Boolean Lattice
    Chang, Fei-Huang
    Gerbner, Daniel
    Li, Wei-Tian
    Methuku, Abhishek
    Nagy, Daniel T.
    Patkos, Balazs
    Vizer, Mate
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2022, 39 (03): : 453 - 463
  • [3] Rainbow Ramsey Problems for the Boolean Lattice
    Fei-Huang Chang
    Dániel Gerbner
    Wei-Tian Li
    Abhishek Methuku
    Dániel T. Nagy
    Balázs Patkós
    Máté Vizer
    Order, 2022, 39 : 453 - 463
  • [4] MAXIMAL-CHAINS AND ANTICHAINS IN BOOLEAN LATTICES
    DUFFUS, D
    SANDS, B
    WINKLER, P
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) : 197 - 205
  • [5] Ramsey properties for V-shaped posets in the Boolean lattice
    Chen, Hong -Bin
    Chen, Wei -Han
    Cheng, Yen-Jen
    Li, Wei-Tian
    Liu, Chia-An
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [6] On the Number of Maximal Antichains in Boolean Lattices for n up to 7
    Ignatov, D. I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (01) : 137 - 146
  • [7] Partitioning Boolean lattices into antichains
    Elzobi, M
    Lonc, Z
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 45 - 55
  • [8] On the number of minimal completely separating systems and antichains in a Boolean lattice
    Roberts, Ian T.
    Rylands, Leanne J.
    Montag, Terry
    Gruttmuller, Martin
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 143 - 158
  • [9] ALMOST BOOLEAN ORTHOMODULAR POSETS
    NAVARA, M
    PTAK, P
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 60 (01) : 105 - 111
  • [10] Packing Posets in the Boolean Lattice
    Dove, Andrew P.
    Griggs, Jerrold R.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2015, 32 (03): : 429 - 438