A Real-Time FHD Learning-Based Super-Resolution System Without a Frame Buffer

被引:22
|
作者
Yang, Ming-Che [1 ,2 ]
Liu, Kuan-Ling [1 ,2 ]
Chien, Shao-Yi [1 ,2 ]
机构
[1] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 106, Taiwan
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 106, Taiwan
关键词
Super resolution; anchored neighborhood regression; real-time; FPGA;
D O I
10.1109/TCSII.2017.2749336
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a real-time learning-based super-resolution (SR) system without a frame buffer. The system running on an Altera Stratix IV field programmable gate array can achieve output resolution of 1920 x 1080 (FHD) at 60 fps. The proposed architecture performs an anchored neighborhood regression algorithm that generates a high-resolution image from a low-resolution image input using only numbers of line buffers. This real-time system without a frame buffer makes it possible to integrate SR operation into image sensors or display drivers carrying out computational photography and display.
引用
收藏
页码:1407 / 1411
页数:5
相关论文
共 50 条
  • [21] An FPGA-based design for real-time super-resolution reconstruction
    Yoan Marin
    Johel Miteran
    Julien Dubois
    Barthélémy Heyrman
    Dominique Ginhac
    Journal of Real-Time Image Processing, 2020, 17 : 1769 - 1785
  • [22] A Real-Time Super-Resolution Method Based on Convolutional Neural Networks
    Shipeng Fu
    Lu Lu
    Hu Li
    Zhen Li
    Wei Wu
    Anand Paul
    Gwanggil Jeon
    Xiaomin Yang
    Circuits, Systems, and Signal Processing, 2020, 39 : 805 - 817
  • [23] Learning-based system for real-time imaging
    Ae, T
    Sakai, K
    Ayaki, H
    Honda, N
    APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING IV, 1999, 3647 : 154 - 163
  • [24] A Real-Time Super-Resolution Method Based on Convolutional Neural Networks
    Fu, Shipeng
    Lu, Lu
    Li, Hu
    Li, Zhen
    Wu, Wei
    Paul, Anand
    Jeon, Gwanggil
    Yang, Xiaomin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (02) : 805 - 817
  • [25] An FPGA-based design for real-time super-resolution reconstruction
    Marin, Yoan
    Miteran, Johel
    Dubois, Julien
    Heyrman, Barthelemy
    Ginhac, Dominique
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (06) : 1769 - 1785
  • [26] Real-time implementation of super-resolution imaging algorithm
    Hein, C
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS VIII, 1998, 3461 : 501 - 511
  • [27] Real-Time Non-Rigid Multi-Frame Depth Video Super-Resolution
    Al Ismaeil, Kassem
    Aouada, Djamila
    Solignac, Thomas
    Mirbach, Bruno
    Ottersten, Bjorn
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [28] FPGA-based Real-Time Super-Resolution System for Ultra High Definition Videos
    He, Zhuolun
    Huang, Hanxian
    Jiang, Ming
    Bai, Yuanchao
    Luo, Guojie
    PROCEEDINGS 26TH IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2018), 2018, : 181 - 188
  • [29] Learning-Based Quality Assessment for Image Super-Resolution
    Zhao, Tiesong
    Lin, Yuting
    Xu, Yiwen
    Chen, Weiling
    Wang, Zhou
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3570 - 3581
  • [30] Fast Learning-Based Single Image Super-Resolution
    Kumar, Neeraj
    Sethi, Amit
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1504 - 1515