Error bounds on ultrasonic scatterer size estimates

被引:43
|
作者
Chaturvedi, P
Insana, MF
机构
[1] Department of Radiology, University of Kansas, Medical Center, Kansas City
来源
关键词
D O I
10.1121/1.415958
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Precision errors that occur in estimating the average scatterer size from pulse-echo ultrasound waveforms are examined in detail. The method-independent lower bound on estimation error is found from the Cramer-Rao inequality for comparison with the predicted error for the measurement technique currently used to estimate scatterer sizes in soft biological tissues. The probability density function for the estimate is also derived. From these statistical analyses, strategies for designing experiments that minimize the error are discussed. It is shown that compared with biological variability, measurement errors in scatterer size estimates are relatively large. Consequently, there is reason to continue searching for more efficient estimators. Although the analysis and results are derived for Gaussian correlation models that have been used to study the function and structure of kidneys, generalization to include correlation models for other tissues is straightforward. (C) 1996 Acoustical Society of America.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 50 条
  • [41] Error bounds of variable conductivity temperature estimates in frictionally heated contacts
    Abdel-Aal, HA
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1998, 25 (01) : 99 - 108
  • [42] ERROR BOUNDS AND ESTIMATES FOR EIGENVALUES OF INTEGRAL-EQUATIONS .2.
    SPENCE, A
    NUMERISCHE MATHEMATIK, 1979, 32 (02) : 139 - 146
  • [43] Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions
    Frommer, Andreas
    Schweitzer, Marcel
    BIT NUMERICAL MATHEMATICS, 2016, 56 (03) : 865 - 892
  • [44] BERRY-ESSEEN BOUNDS FOR ERROR VARIANCE ESTIMATES IN LINEAR MODELS
    陈希孺
    ScienceinChina,SerA., 1981, Ser.A.1981 (07) : 899 - 913
  • [45] Practical error bounds for ultrasonic strain estimation using coded excitation
    Liu, J
    Du, HN
    Zemp, R
    Insana, MF
    CONFERENCE RECORD OF THE THIRTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2004, : 158 - 162
  • [46] Effective scatterer size estimates in HT-29 spheroids at 55 MHz and 80 MHz
    Wirtzfeld, L. A.
    Berndl, E. S. L.
    Czarnota, G. J.
    Kolios, M. C.
    2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2014, : 632 - 635
  • [47] Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer
    Liu, W.
    Zagzebski, J. A.
    Hall, T. J.
    Madsen, E. L.
    Varghese, T.
    Kliewer, M. A.
    Panda, S.
    Lowery, C.
    Barnes, S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (15): : 4169 - 4183
  • [48] ASYMPTOTIC BOUNDS ON THE SIZE OF ERROR-CORRECTING RECORDING CODES
    YANG, SH
    WINICK, KA
    IEE PROCEEDINGS-COMMUNICATIONS, 1994, 141 (06): : 365 - 370
  • [49] Nonasymptotic Bounds on the L2 Error of Neural Network Regression Estimates
    Michael Hamers
    Michael Kohler
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 131 - 151
  • [50] ERROR BOUNDS AND ESTIMATES FOR GAUSS-TURAN QUADRATURE FORMULAE OF ANALYTIC FUNCTIONS
    Spalevic, Miodrag M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 443 - 467