Using evolutionary programming and minimum description length principle for data mining of Bayesian networks

被引:0
|
作者
Wong, ML [1 ]
Lam, W
Leung, KS
机构
[1] Lingnan Coll, Dept Informat Syst, Tuen Mun, Peoples R China
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Peoples R China
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Peoples R China
关键词
evolutionary computation; Bayesian networks; unsupervised learning; minimum description length principle; genetic algorithms;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have developed a new approach (MDLEP) to learning Bayesian network structures based on the Minimum Description Length (MDL) principle and Evolutionary Programming (EP). It employs a MDL metric, which is founded on information theory, and integrates a knowledge-guided genetic operator for the optimization in the search process.
引用
收藏
页码:174 / 178
页数:5
相关论文
共 50 条
  • [41] Maintaining regularity and generalization in data using the minimum description length principle and genetic algorithm: Case of grammatical inference
    Pandey, Hari Mohan
    Chaudhary, Ankit
    Mehrotra, Deepti
    Kendall, Graham
    SWARM AND EVOLUTIONARY COMPUTATION, 2016, 31 : 11 - 23
  • [42] Data mining of Bayesian networks using cooperative coevolution
    Wong, ML
    Lee, SY
    Leung, KS
    DECISION SUPPORT SYSTEMS, 2004, 38 (03) : 451 - 472
  • [43] Bayesian networks for data mining
    Heckerman, D
    DATA MINING AND KNOWLEDGE DISCOVERY, 1997, 1 (01) : 79 - 119
  • [44] Bayesian Networks for Data Mining
    David Heckerman
    Data Mining and Knowledge Discovery, 1997, 1 : 79 - 119
  • [45] Minimum Description Length Recurrent Neural Networks
    Lan, Nur
    Geyer, Michal
    Chemla, Emmanuel
    Katzir, Roni
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2022, 10 : 785 - 799
  • [46] Information Geometry and Minimum Description Length Networks
    Sun, Ke
    Wang, Jun
    Kalousis, Alexandros
    Marchand-Maillet, Stephane
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 49 - 58
  • [47] Towards Web Spam Filtering using a Classifier based on the Minimum Description Length Principle
    Silva, Renato M.
    Yamakami, Akebo
    Almeida, Tiago A.
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 470 - 475
  • [48] Optimal reference sequence selection for genome assembly using minimum description length principle
    Wajid, Bilal
    Serpedin, Erchin
    Nounou, Mohamed
    Nounou, Hazem
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2012, (01)
  • [49] Vibration signals denoising using minimum description length principle for detecting impulsive signatures
    Wang, Yanxue
    Xiang, Jiawei
    Jiang Zhansi
    Yang Lianfa
    He, Zhengjia
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (10) : 1818 - 1828
  • [50] Increasing generalizability via the principle of minimum description length Comment
    Bonifay, Wes
    BEHAVIORAL AND BRAIN SCIENCES, 2022, 45