Using evolutionary programming and minimum description length principle for data mining of Bayesian networks

被引:0
|
作者
Wong, ML [1 ]
Lam, W
Leung, KS
机构
[1] Lingnan Coll, Dept Informat Syst, Tuen Mun, Peoples R China
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Peoples R China
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Peoples R China
关键词
evolutionary computation; Bayesian networks; unsupervised learning; minimum description length principle; genetic algorithms;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have developed a new approach (MDLEP) to learning Bayesian network structures based on the Minimum Description Length (MDL) principle and Evolutionary Programming (EP). It employs a MDL metric, which is founded on information theory, and integrates a knowledge-guided genetic operator for the optimization in the search process.
引用
收藏
页码:174 / 178
页数:5
相关论文
共 50 条
  • [21] Histograms based on the minimum description length principle
    Wang, Hai
    Sevcik, Kenneth C.
    VLDB JOURNAL, 2008, 17 (03): : 419 - 442
  • [22] A first look at the minimum description length principle
    Grunwald, Peter D.
    INTELLIGENT ALGORITHMS IN AMBIENT AND BIOMEDICAL COMPUTING, 2006, 7 : 187 - 213
  • [23] How good are the Bayesian information criterion and the minimum description length principle for model selection A Bayesian network analysis
    Cruz-Ramirez, Nicandro
    Acosta-Mesa, Hector-Gabriel
    Barrientos-Martinez, Rocio-Erandi
    Nava-Fernandez, Luis-Alonso
    MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 494 - +
  • [24] Spatially adaptive wavelet denoising using the minimum description length principle
    Xie, JC
    Zhang, DL
    Xu, WL
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (02) : 179 - 187
  • [25] LOW-RANK DATA MODELING VIA THE MINIMUM DESCRIPTION LENGTH PRINCIPLE
    Ramirez, Ignacio
    Sapiro, Guillermo
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2165 - 2168
  • [26] A hybrid approach to learn Bayesian networks using evolutionary programming
    Wong, ML
    Lee, SY
    Leung, KS
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1314 - 1319
  • [27] Learning Causal Bayesian Networks Using Minimum Free Energy Principle
    Takashi Isozaki
    New Generation Computing, 2012, 30 : 17 - 52
  • [28] Learning Causal Bayesian Networks Using Minimum Free Energy Principle
    Isozaki, Takashi
    NEW GENERATION COMPUTING, 2012, 30 (01) : 17 - 52
  • [29] Minimum description length principle applied to camouflage assessment
    Ruppert, GS
    Wimmer, A
    Bischof, H
    Gretzmacher, FM
    Wendner, G
    TARGETS AND BACKGROUNDS VII: CHARACTERIZATION AND REPRESENTATION, 2001, 4370 : 50 - 59
  • [30] Optimizing Hierarchical Visualizations with the Minimum Description Length Principle
    Veras, Rafael
    Collins, Christopher
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 631 - 640