Faster Compact On-Line Lempel-Ziv Factorization

被引:6
|
作者
Yamamoto, Jun'ichi [1 ]
Tomohiro, I [1 ]
Bannai, Hideo [1 ]
Inenaga, Shunsuke [1 ]
Takeda, Masayuki [1 ]
机构
[1] Kyushu Univ, Dept Informat, Nishi Ku, Fukuoka, Japan
关键词
Lempel-Ziv Factorization; String Index; ALGORITHM;
D O I
10.4230/LIPIcs.STACS.2014.675
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new on-line algorithm for computing the Lempel-Ziv factorization of a string that runs in O(N log N) time and uses only O(N log sigma) bits of working space, where N is the length of the string and sigma is the size of the alphabet. This is a notable improvement compared to the performance of previous on-line algorithms using the same order of working space but running in either O(N log(3) N) time (Okanohara & Sadakane 2009) or O(N log(2) N) time (Starikovskaya 2012). The key to our new algorithm is in the utilization of an elegant but less popular index structure called Directed Acyclic Word Graphs, or DAWGs (Blumer et al. 1985). We also present an opportunistic variant of our algorithm, which, given the run length encoding of size m of a string of length N, computes the Lempel-Ziv factorization of the string on-line, in O (m . min {(log log m)(log log N)/log log log N, root lon m/log log m}) time and O(m log N) bits of space.
引用
收藏
页码:675 / 686
页数:12
相关论文
共 50 条
  • [41] A Comparison of Index-Based Lempel-Ziv LZ77 Factorization Algorithms
    Al-Hafeedh, Anisa
    Crochemore, Maxime
    Ilie, Lucian
    Kopylova, Evguenia
    Smyth, W. F.
    Tischler, German
    Yusufu, Munina
    [J]. ACM COMPUTING SURVEYS, 2012, 45 (01)
  • [42] Lempel-Ziv Factorization in Linear-Time O(1)-Workspace for Constant Alphabets
    Liu, Weijun
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (12): : 2145 - 2153
  • [43] Near-Optimal Quantum Algorithms for Bounded Edit Distance and Lempel-Ziv Factorization
    Gibney, Daniel
    Jin, Ce
    Kociumaka, Tomasz
    Thankachan, Sharma V.
    [J]. PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 3302 - 3332
  • [44] IMPROVED REDUNDANCY OF A VERSION OF THE LEMPEL-ZIV ALGORITHM
    WYNER, AD
    WYNER, AJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) : 723 - 731
  • [45] The Lempel-Ziv complexity of fixed points of morphisms
    Constantinescu, Sorin
    Ilie, Lucian
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 280 - 291
  • [46] Lempel-Ziv compression of highly structured documents
    Adiego, Joaquin
    Navarro, Gonzalo
    de la Fuente, Pablo
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2007, 58 (04): : 461 - 478
  • [47] Lempel-Ziv index for q-grams
    Karkkainen, J
    Sutinen, E
    [J]. ALGORITHMICA, 1998, 21 (01) : 137 - 154
  • [48] Practical fixed length Lempel-Ziv coding
    Klein, Shmuel T.
    Shapira, Dana
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 163 : 326 - 333
  • [49] ON THE BIT-COMPLEXITY OF LEMPEL-ZIV COMPRESSION
    Ferragina, Paolo
    Nitto, Igor
    Venturini, Rossano
    [J]. SIAM JOURNAL ON COMPUTING, 2013, 42 (04) : 1521 - 1541
  • [50] The Lempel-Ziv complexity in infinite ergodic systems
    Shinkai, Soya
    Aizawa, Yoji
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 261 - 266