The Lempel-Ziv complexity of fixed points of morphisms

被引:0
|
作者
Constantinescu, Sorin [1 ]
Ilie, Lucian [1 ]
机构
[1] Univ Western Ontario, Dept Comp Sci, London, ON N6A 5B7, Canada
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Lempel-Ziv complexity is a fundamental measure of complexity for words, closely connected with the famous LZ77, LZ78 compression algorithms. We investigate this complexity measure for one of the most important families of infinite words in combinatorics, namely the fixed points of morphisms. We give a complete characterisation of the complexity classes which are Theta(1), Theta(log n), and Theta(n(1/k)), k is an element of N, k >= 2, depending on the periodicity of the word and the growth function of the morphism. The relation with the well-known classification of Ehrenfeucht, Lee, Rozenberg, and Pansiot for factor complexity classes is also investigated. The two measures complete each other, giving an improved picture for the complexity of these infinite words.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 50 条
  • [1] The lempel-ziv complexity of fixed points of morphisms
    Constantinescu, Sorin
    Ilie, Lucian
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 466 - 481
  • [2] Lempel-Ziv and Multiscale Lempel-Ziv Complexity in Depression
    Kalev, K.
    Bachmann, M.
    Orgo, L.
    Lass, J.
    Hinrikus, H.
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 4158 - 4161
  • [3] On Lempel-Ziv complexity of sequences
    Doganaksoy, Ali
    Gologlu, Faruk
    [J]. SEQUENCES AND THEIR APPLICATIONS - SETA 2006, 2006, 4086 : 180 - 189
  • [4] Lempel-Ziv dimension for Lempel-Ziv compression
    Lopez-Valdes, Maria
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 693 - 703
  • [5] Lempel-Ziv Complexity of Photonic Quasicrystals
    Monzon, Juan J.
    Felipe, Angel
    Sanchez-Soto, Luis L.
    [J]. CRYSTALS, 2017, 7 (07):
  • [6] ON THE BIT-COMPLEXITY OF LEMPEL-ZIV COMPRESSION
    Ferragina, Paolo
    Nitto, Igor
    Venturini, Rossano
    [J]. SIAM JOURNAL ON COMPUTING, 2013, 42 (04) : 1521 - 1541
  • [7] The Lempel-Ziv complexity in infinite ergodic systems
    Shinkai, Soya
    Aizawa, Yoji
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 261 - 266
  • [8] Practical fixed length Lempel-Ziv coding
    Klein, Shmuel T.
    Shapira, Dana
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 163 : 326 - 333
  • [9] Lempel-Ziv complexity in schizophrenia: A MEG study
    Fernandez, Alberto
    Lopez-Ibor, Maria-Ines
    Turrero, Agustin
    Santos, Juan-Matias
    Moron, Maria-Dolores
    Hornero, Roberto
    Gomez, Carlos
    Andreina Mendez, Maria
    Ortiz, Tomas
    Jose Lopez-Ibor, Juan
    [J]. CLINICAL NEUROPHYSIOLOGY, 2011, 122 (11) : 2227 - 2235
  • [10] Characterizing spike trains with Lempel-Ziv complexity
    Szczepanski, J
    Amigó, JM
    Wajnryb, E
    Sanchez-Vives, M
    [J]. COMPUTATIONAL NEUROSCIENCE: TRENDS IN RESEARCH 2004, 2004, : 79 - 84