Lempel-Ziv Complexity of Photonic Quasicrystals

被引:2
|
作者
Monzon, Juan J. [1 ]
Felipe, Angel [2 ]
Sanchez-Soto, Luis L. [1 ,3 ]
机构
[1] Univ Complutense, Fac Fis, Dept Opt, E-28040 Madrid, Spain
[2] Univ Complutense, Fac Matemat, Dept Estadist & Invest Operat, E-28040 Madrid, Spain
[3] Max Planck Inst Phys Lichts, Staudtstr 2, D-91058 Erlangen, Germany
来源
CRYSTALS | 2017年 / 7卷 / 07期
关键词
quasicrystals; photonic crystals; photonic bandgap materials; OMNIDIRECTIONAL REFLECTION; SPECTRAL PROPERTIES; CANTOR SPECTRA; WAVE-FUNCTIONS; FIBONACCI; LOCALIZATION; LIGHT; TRANSMISSION; MULTILAYERS; EXTENSIONS;
D O I
10.3390/cryst7070183
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The properties of one-dimensional photonic quasicrystals ultimately rely on their nontrivial long-range order, a hallmark that can be quantified in many ways depending on the specific aspects to be studied. Here, we assess the quasicrystal structural features in terms of the Lempel-Ziv complexity. This is an easily calculable quantity that has proven to be useful for describing patterns in a variety of systems. One feature of great practical relevance is that it provides a reliable measure of how hard it is to create the structure. Using the generalized Fibonacci quasicrystals as our thread, we give analytical fitting formulas for the dependence of the optical response with the complexity.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Lempel-Ziv and Multiscale Lempel-Ziv Complexity in Depression
    Kalev, K.
    Bachmann, M.
    Orgo, L.
    Lass, J.
    Hinrikus, H.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 4158 - 4161
  • [2] On Lempel-Ziv complexity of sequences
    Doganaksoy, Ali
    Gologlu, Faruk
    SEQUENCES AND THEIR APPLICATIONS - SETA 2006, 2006, 4086 : 180 - 189
  • [3] Lempel-Ziv dimension for Lempel-Ziv compression
    Lopez-Valdes, Maria
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 693 - 703
  • [4] The Lempel-Ziv complexity of fixed points of morphisms
    Constantinescu, Sorin
    Ilie, Lucian
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 280 - 291
  • [5] ON THE BIT-COMPLEXITY OF LEMPEL-ZIV COMPRESSION
    Ferragina, Paolo
    Nitto, Igor
    Venturini, Rossano
    SIAM JOURNAL ON COMPUTING, 2013, 42 (04) : 1521 - 1541
  • [6] The Lempel-Ziv complexity in infinite ergodic systems
    Shinkai, Soya
    Aizawa, Yoji
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 261 - 266
  • [7] Characterizing spike trains with Lempel-Ziv complexity
    Szczepanski, J
    Amigó, JM
    Wajnryb, E
    Sanchez-Vives, M
    COMPUTATIONAL NEUROSCIENCE: TRENDS IN RESEARCH 2004, 2004, : 79 - 84
  • [8] Lempel-Ziv complexity in schizophrenia: A MEG study
    Fernandez, Alberto
    Lopez-Ibor, Maria-Ines
    Turrero, Agustin
    Santos, Juan-Matias
    Moron, Maria-Dolores
    Hornero, Roberto
    Gomez, Carlos
    Andreina Mendez, Maria
    Ortiz, Tomas
    Jose Lopez-Ibor, Juan
    CLINICAL NEUROPHYSIOLOGY, 2011, 122 (11) : 2227 - 2235
  • [9] Characterizing spike trains with Lempel-Ziv complexity
    Szczepanski, J
    Amigó, JM
    Wajnryb, E
    Sanchez-Vives, A
    NEUROCOMPUTING, 2004, 58 : 79 - 84
  • [10] On Lempel-Ziv complexity for multidimensional data analysis
    Zozor, S
    Ravier, P
    Buttellic, O
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 345 (1-2) : 285 - 302