Independent Roman Domination Stable and Vertex-Critical Graphs

被引:1
|
作者
Wu, Pu [1 ]
Shao, Zehui [1 ]
Zhu, Enqiang [1 ]
Jiang, Huiqin [2 ]
Nazari-Moghaddam, S. [3 ]
Sheikholeslami, Seyed Mahmoud [3 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Chengdu Univ, Sch Informat Sci & Engn, Chengdu 610106, Sichuan, Peoples R China
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
来源
IEEE ACCESS | 2018年 / 6卷
关键词
Independent Roman domination; independent Roman stable graph; independent Roman domination vertex critical graphs;
D O I
10.1109/ACCESS.2018.2883028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Roman dominating function (RDF) on a graph G is a function f : V(G) -> {0, 1, 2} for which every vertex assigned 0 is adjacent to a vertex assigned 2. The weight of an RDF is the value omega(f ) = Sigma(u is an element of V(G))f(u). The minimum weight of an RDF on a graph G is called the Roman domination number of G. An RDF f is called an independent Roman dominating function (IRDF) if the set {v is an element of V vertical bar f (v) >= 1} is an independent set. The minimum weight of an IRDF on a graph G is called the independent Roman domination number of G and is denoted by i(R )(G). A graph G is independent Roman domination stable if the independent Roman domination number of G does not change under removal of any vertex. A graph G is said to be independent Roman domination vertex critical or i(R)-vertex critical, if for any vertex v in G, i(R)(G - nu) < i(R)(G). In this paper, we characterize independent Roman domination stable trees and we establish upper bounds on the order of independent Roman stable graphs. Also, we investigate the properties of i(R)-vertex critical graphs. In particular, we present some families of i(R)-vertex critical graphs and we characterize i(R)-vertex critical block graphs.
引用
收藏
页码:74737 / 74746
页数:10
相关论文
共 50 条
  • [21] Paired Domination Vertex Critical Graphs
    Hou, Xinmin
    Edwards, Michelle
    [J]. GRAPHS AND COMBINATORICS, 2008, 24 (05) : 453 - 459
  • [22] Properties of independent Roman domination in graphs
    Adabi, M.
    Targhi, E. Ebrahimi
    Rad, N. Jafari
    Moradi, M. Saied
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 11 - 18
  • [23] Independent Roman {2}-domination in graphs
    Rahmouni, Abdelkader
    Chellali, Mustapha
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 236 : 408 - 414
  • [24] Bounds for independent Roman domination in graphs
    Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
    不详
    不详
    [J]. J. Comb. Math. Comb. Comp., (351-365):
  • [25] Roman domination and independent Roman domination on graphs with maximum degree three
    Luiz, Atilio G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 348 : 260 - 278
  • [26] Independent Double Roman Domination in Graphs
    Hamidreza Maimani
    Mostafa Momeni
    Sakineh Nazari Moghaddam
    Farhad Rahimi Mahid
    Seyed Mahmoud Sheikholeslami
    [J]. Bulletin of the Iranian Mathematical Society, 2020, 46 : 543 - 555
  • [27] On the Independent Double Roman Domination in Graphs
    Mojdeh, Doost Ali
    Mansouri, Zhila
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (04) : 905 - 915
  • [28] On the Independent Double Roman Domination in Graphs
    Doost Ali Mojdeh
    Zhila Mansouri
    [J]. Bulletin of the Iranian Mathematical Society, 2020, 46 : 905 - 915
  • [29] Independent Double Roman Domination in Graphs
    Maimani, Hamidreza
    Momeni, Mostafa
    Moghaddam, Sakineh Nazari
    Mahid, Farhad Rahimi
    Sheikholeslami, Seyed Mahmoud
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 543 - 555
  • [30] Independent double Roman domination in graphs
    Maimani, H. R.
    Momeni, M.
    Mahid, F. Rahimi
    Sheikholeslami, S. M.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 905 - 910