Engineering mesoporosity promoting high-performance polymer electrolyte fuel cells

被引:9
|
作者
Wan, Hong [1 ,2 ]
Yao, Yingfang [1 ,2 ]
Liu, Jianguo [1 ,2 ,3 ]
You, Yong [1 ,2 ]
Li, Xiaoyan [1 ,2 ]
Shao, Kenan [1 ,2 ]
Zou, Zhigang [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Jiangsu Key Lab Nano Technol, Natl Lab Solid State Microstruct, Coll Engn & Appl Sci, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Kunshan Innovat Inst, Kunshan Sunlaite New Energy Co Ltd, 1699 South Zuchongzhi Rd, Suzhou 215347, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesoporous materials; Proton exchange membrane fuel cells; Sulfated zirconia; Large proton conductivity; PROTON-EXCHANGE MEMBRANES; COMPOSITE MEMBRANES; MIXED OXIDES; ZIRCONIA; NAFION; CATALYST; NANOPARTICLES; IMPROVEMENT; PLATINUM; ACID;
D O I
10.1016/j.ijhydene.2017.06.220
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membranes (PEMs) are a vital component in fuel cells (FCs) that attract significant research interest for the present hydrogen energy use. High proton conductivity of PEMs under various operation conditions highly influences the integrated performance of PCs that determines their commercial applications. Hence mesoporous superacidic sulfated zirconia (S-ZrO2) is fabricated and introduced into Nafion matrix to construct hybrid PEMs. The mesoporosity of S-ZrO2 is demonstrated highly controllable. High mesoporosity leads to increased amount of sulfonic groups (-SO3H) aggregating on S-ZrO2 surface. When introduced in PEMs, the highly mesoporous S-ZrO2 chemically enhances the amount of proton-containing groups, structurally improves the density of ion channels, and reserves water as effective reservoirs, which resultantly maintains high proton conductivity under variable conditions, and thus the performance of assembled FCs. The SZrO2 exhibits the highest surface area of 181 m(2) g(-1). The hybrid PEMs loaded with 10 wt% such S-ZrO2 achieve a highest proton conductivity of 0.83 S cm(-1) that is similar to 7 time of that for pristine Nafion (R) membranes. The power density at 0.6 V of FCs with the hybrid PEMs is 786 mW cm(-2), much higher than that for commercial Nafion 211. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:21294 / 21304
页数:11
相关论文
共 50 条
  • [1] High-Performance Alkaline Polymer Electrolyte for Fuel Cell Applications
    Pan, Jing
    Lu, Shanfu
    Li, Yan
    Huang, Aibin
    Zhuang, Lin
    Lu, Juntao
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) : 312 - 319
  • [2] High performance direct methanol polymer electrolyte fuel cells
    Ren, XM
    Wilson, MS
    Gottesfeld, S
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : L12 - L15
  • [3] High-Performance Fuel Cells with a Plasma-Etched Polymer Electrolyte Membrane with Microhole Arrays
    Seol, Changwook
    Jang, Segeun
    Lee, Jinwon
    Le Vu Nam
    Tuyet Anh Pham
    Koo, Seunghoe
    Kim, Kyeongtae
    Jang, Jue-Hyuk
    Kim, Sang Moon
    Yoo, Sung Jong
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (17): : 5884 - 5894
  • [4] Advances in the high performance polymer electrolyte membranes for fuel cells
    Zhang, Hongwei
    Shen, Pei Kang
    [J]. CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2382 - 2394
  • [5] High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Huaneng Su
    Cecil Felix
    Olivia Barron
    Piotr Bujlo
    Bernard J. Bladergroen
    Bruno G. Pollet
    Sivakumar Pasupathi
    [J]. Electrocatalysis, 2014, 5 : 361 - 371
  • [6] High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells
    Mu, Tong
    Wang, Lele
    Wang, Qian
    Wu, Yang
    Jannasch, Patric
    Yang, Jingshuai
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2024, 98 : 512 - 523
  • [7] High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells
    Tong Mu
    Lele Wang
    Qian Wang
    Yang Wu
    Patric Jannasch
    Jingshuai Yang
    [J]. Journal of Energy Chemistry., 2024, 98 (11) - 523
  • [8] High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Su, Huaneng
    Felix, Cecil
    Barron, Olivia
    Bujlo, Piotr
    Bladergroen, Bernard J.
    Pollet, Bruno G.
    Pasupathi, Sivakumar
    [J]. ELECTROCATALYSIS, 2014, 5 (04) : 361 - 371
  • [9] Effects of Ink Formulation on Construction of Catalyst Layers for High-Performance Polymer Electrolyte Membrane Fuel Cells
    Gong, Qing
    Li, Chenzhao
    Liu, Yadong
    Ilavsky, Jan
    Guo, Fei
    Cheng, Xuan
    Xie, Jian
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (31) : 37004 - 37013
  • [10] High-Performance Ru2P Anodic Catalyst for Alkaline Polymer Electrolyte Fuel Cells
    Zhao, Yuanmeng
    Yang, Fulin
    Zhang, Wei
    Li, Qihao
    Wang, Xuewei
    Su, Lixin
    Hu, Xuemei
    Wang, Yan
    Wang, Zizhun
    Zhuang, Lin
    Chen, Shengli
    Luo, Wei
    [J]. CCS CHEMISTRY, 2022, 4 (05): : 1732 - 1744