Engineering mesoporosity promoting high-performance polymer electrolyte fuel cells

被引:9
|
作者
Wan, Hong [1 ,2 ]
Yao, Yingfang [1 ,2 ]
Liu, Jianguo [1 ,2 ,3 ]
You, Yong [1 ,2 ]
Li, Xiaoyan [1 ,2 ]
Shao, Kenan [1 ,2 ]
Zou, Zhigang [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Jiangsu Key Lab Nano Technol, Natl Lab Solid State Microstruct, Coll Engn & Appl Sci, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, 22 Hankou Rd, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Kunshan Innovat Inst, Kunshan Sunlaite New Energy Co Ltd, 1699 South Zuchongzhi Rd, Suzhou 215347, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesoporous materials; Proton exchange membrane fuel cells; Sulfated zirconia; Large proton conductivity; PROTON-EXCHANGE MEMBRANES; COMPOSITE MEMBRANES; MIXED OXIDES; ZIRCONIA; NAFION; CATALYST; NANOPARTICLES; IMPROVEMENT; PLATINUM; ACID;
D O I
10.1016/j.ijhydene.2017.06.220
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membranes (PEMs) are a vital component in fuel cells (FCs) that attract significant research interest for the present hydrogen energy use. High proton conductivity of PEMs under various operation conditions highly influences the integrated performance of PCs that determines their commercial applications. Hence mesoporous superacidic sulfated zirconia (S-ZrO2) is fabricated and introduced into Nafion matrix to construct hybrid PEMs. The mesoporosity of S-ZrO2 is demonstrated highly controllable. High mesoporosity leads to increased amount of sulfonic groups (-SO3H) aggregating on S-ZrO2 surface. When introduced in PEMs, the highly mesoporous S-ZrO2 chemically enhances the amount of proton-containing groups, structurally improves the density of ion channels, and reserves water as effective reservoirs, which resultantly maintains high proton conductivity under variable conditions, and thus the performance of assembled FCs. The SZrO2 exhibits the highest surface area of 181 m(2) g(-1). The hybrid PEMs loaded with 10 wt% such S-ZrO2 achieve a highest proton conductivity of 0.83 S cm(-1) that is similar to 7 time of that for pristine Nafion (R) membranes. The power density at 0.6 V of FCs with the hybrid PEMs is 786 mW cm(-2), much higher than that for commercial Nafion 211. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:21294 / 21304
页数:11
相关论文
共 50 条
  • [31] Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells
    Jeon, Yukwon
    Kim, Dong Jun
    Koh, Jong Kwan
    Ji, Yunseong
    Kim, Jong Hak
    Shul, Yong-Gun
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [32] Performance of a 5 kWe fuel processor for polymer electrolyte fuel cells
    Cipiti, F.
    Pino, L.
    Vita, A.
    Lagana, M.
    Recupero, V.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (12) : 3197 - 3203
  • [33] Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells
    Bai, Huijuan
    Peng, Hanging
    Xiang, Yan
    Zhang, Jin
    Wang, Haining
    Lu, Shanfu
    Zhuang, Lin
    [J]. JOURNAL OF POWER SOURCES, 2019, 443
  • [34] High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells
    Jeong, Gisu
    Kim, MinJoong
    Han, Junyoung
    Kim, Hyoung-Juhn
    Shul, Yong-Gun
    Cho, EunAe
    [J]. JOURNAL OF POWER SOURCES, 2016, 323 : 142 - 146
  • [35] The influence of phosphoric acid migration on the performance of high temperature polymer electrolyte fuel cells
    Halter, J.
    Thomas, S.
    Kaer, S. K.
    Schmidt, T. J.
    Buchi, F. N.
    [J]. JOURNAL OF POWER SOURCES, 2018, 399 : 151 - 156
  • [36] Gas Diffusion Layers with Deterministic Structure for High Performance Polymer Electrolyte Fuel Cells
    Csoklich, Christoph
    Steim, Roland
    Marone, Federica
    Schmidt, Thomas J.
    Buchi, Felix N.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (08) : 9908 - 9918
  • [37] Polymer nanocomposite ionogels, high-performance electrolyte membranes
    Gayet, Florence
    Viau, Lydie
    Leroux, Fabrice
    Monge, Sophie
    Robin, Jean-Jacques
    Vioux, Andre
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (42) : 9456 - 9462
  • [38] High-performance fibre battery with polymer gel electrolyte
    Lu, Chenhao
    Jiang, Haibo
    Cheng, Xiangran
    He, Jiqing
    Long, Yao
    Chang, Yingfan
    Gong, Xiaocheng
    Zhang, Kun
    Li, Jiaxin
    Zhu, Zhengfeng
    Wu, Jingxia
    Wang, Jiajia
    Zheng, Yuanyuan
    Shi, Xiang
    Ye, Lei
    Liao, Meng
    Sun, Xuemei
    Wang, Bingjie
    Chen, Peining
    Wang, Yonggang
    Peng, Huisheng
    [J]. NATURE, 2024, : 86 - 91
  • [39] HIGH-PERFORMANCE PROPANE FUEL CELLS
    GRUBB, WT
    [J]. NATURE, 1964, 201 (492) : 699 - &
  • [40] Carbonation effects on the performance of alkaline polymer electrolyte fuel cells
    Li, Guangwei
    Wang, Ying
    Pan, Jing
    Han, Juanjuan
    Liu, Qiong
    Li, Xueqi
    Li, Pengcheng
    Chen, Chen
    Xiao, Li
    Lu, Juntao
    Zhuang, Lin
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (20) : 6655 - 6660