Wavelet Sets and Scaling Sets in Local Fields

被引:3
|
作者
Behera, Biswaranjan [1 ]
机构
[1] Stat & Math Unit, 203 BT Rd, Kolkata 700108, India
关键词
Local field; Wavelet set; Scaling set; Generalized scaling set; MSF wavelet; MRA-wavelet; Translation congruence; Dilation congruence; MULTIRESOLUTION ANALYSIS; DIMENSION FUNCTIONS; CONSTRUCTION; DILATIONS; MRAS;
D O I
10.1007/s00041-021-09887-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide characterizations of minimally supported frequency multiwavelets, multiwavelet sets, generalized scaling sets, and scaling sets in a local field of positive characteristic. We also construct examples of multiwavelet sets and wavelet sets. In particular, we construct examples of unbounded wavelet sets and show that the corresponding wavelets are not associated with multiresolution analyses.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] p-Adic Scaling and Generalized Scaling Sets-Adic Scaling and Generalized Scaling Sets
    Haldar, Debasis
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2025, 17 (01) : 16 - 27
  • [22] From scaling sets to scaling functions
    Maksimovic, Srdan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (02) : 255 - 267
  • [23] Spectral sets and tiles on vector space over local fields
    Kadir, Mamateli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (01) : 240 - 249
  • [24] Local Fractional Discrete Wavelet Transform for Solving Signals on Cantor Sets
    Zhao, Yang
    Baleanu, Dumitru
    Cattani, Carlo
    Cheng, De-Fu
    Yang, Xiao-Jun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [25] Tiling sets and spectral sets over finite fields
    Aten, C.
    Ayachi, B.
    Bau, E.
    FitzPatrick, D.
    Iosevich, A.
    Liu, H.
    Lott, A.
    MacKinnon, I.
    Maimon, S.
    Nan, S.
    Pakianathan, J.
    Petridis, G.
    Mena, C. Rojas
    Sheikh, A.
    Tribone, T.
    Weill, J.
    Yu, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (08) : 2547 - 2577
  • [26] Arbitrary bandwidth wavelet sets
    Evangelista, G
    Cavaliere, S
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1801 - 1804
  • [27] Frame wavelet sets in R
    Dai, X
    Diao, Y
    Gu, Q
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (07) : 2045 - 2055
  • [28] WAVELET SETS ACCUMULATING AT THE ORIGIN
    Vyas, Aparna
    Dubey, Rajeshwari
    REAL ANALYSIS EXCHANGE, 2009, 35 (02) : 463 - 478
  • [29] Wavelet representation of contour sets
    Bertram, M
    Laney, DE
    Duchaineau, MA
    Hansen, CD
    Hamann, B
    Joy, KI
    VISUALIZATION 2001, PROCEEDINGS, 2001, : 303 - 310
  • [30] The existence of subspace wavelet sets
    Dai, X
    Diao, Y
    Gu, Q
    Han, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) : 83 - 90