p-Adic Scaling and Generalized Scaling Sets-Adic Scaling and Generalized Scaling Sets

被引:0
|
作者
Haldar, Debasis [1 ]
机构
[1] NIT Rourkela, Dept Math, Rourkela 769008, Odisha, India
关键词
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic number; scaling set; multiwavelet set; generalized scaling set; WAVELETS;
D O I
10.1134/S2070046625010029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article aims to develop MRA theory along with wavelet theory through corresponding sets in L-2(Q(p)). Generalized scaling sets are important in wavelet theory because they determine (multi)wavelet sets. Although, the theory of scaling sets and generalized scaling sets on R and local fields of positive characteristics are already developed to some extent, but it is yet to be studied on local fields of zero characteristic like Q(p). This article presents necessary conditions for scaling sets with counting formulae for the elements in scaling sets, and characterization of generalized scaling sets with examples.
引用
收藏
页码:16 / 27
页数:12
相关论文
共 50 条
  • [1] Wavelet sets, scaling sets and generalized scaling sets on Vilenkin group
    Mahapatra, Prasadini
    Singh, Divya
    Swain, Arpit Chandan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (12)
  • [2] Scaling sets and generalized scaling sets on Cantor dyadic group
    Mahapatra, Prasadini
    Singh, Divya
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (04)
  • [3] p-adic Brownian motion is a scaling limit
    Weisbart, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (20)
  • [4] Natural extensions for p-adic β-shifts and other scaling maps
    Furno, Joanna
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (06): : 1099 - 1108
  • [5] UNIVERSAL SCALING OF GENERALIZED DIMENSIONS ON CRITICAL STRANGE SETS
    CAO, KF
    PENG, SL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (03): : 589 - 599
  • [6] From scaling sets to scaling functions
    Maksimovic, Srdan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (02) : 255 - 267
  • [7] p-adic quotient sets
    Garcia, Stephan Ramon
    Hong, Yu Xuan
    Luca, Florian
    Pinsker, Elena
    Sanna, Carlo
    Schechter, Evan
    Starr, Adam
    ACTA ARITHMETICA, 2017, 179 (02) : 163 - 184
  • [8] p-Adic Multiwavelet Sets
    Debasis Haldar
    Divya Singh
    p-Adic Numbers, Ultrametric Analysis and Applications, 2019, 11 : 192 - 204
  • [9] p-Adic Multiwavelet Sets
    Haldar, Debasis
    Singh, Divya
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2019, 11 (03) : 192 - 204
  • [10] Framelet Sets and Associated Scaling Sets
    Zhang, Zhihua
    MATHEMATICS, 2021, 9 (21)